Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+118704 
+3

Juriemagic, it is good to see you here   laugh

 

 

S=2πxh+2πx2S=2πx2000πx2+2πx2S=4000x+2πx2S=4000x1+2πx2dSdx=4000x2+4πxd2Sdx2=8000x3+4πd2Sdx2>0since x>0, concave upSo any turning point where x>0 will be a minimumfind minimumdSdx=4000x2+4πx=0x>04000+4πx3=0πx3=1000x=103π

 

so for minimum surface area  the radius is    103πcm        and the height is   

 

h=2000πx2h=2000÷(πx2)h=2000÷[π(10π1/3)2]h=2000÷[100ππ2/3]h=2000÷[100π1/3]h=203π

 

 

 

 

minSA=4000x1+2πx2minSA=4000(10π1/3)1+2π(10π1/3)2minSA=4000(π1/310)+2π(100π2/3)minSA=400π1/3+(200ππ2/3)minSA=600π1/3

 

Jul 17, 2019
 #2
avatar+501 
+3
Jul 17, 2019
 #15
avatar+501 
+4

I re-wrote the proof by myself to make sure I got it:

Prove of 2sin2+4sin4++178sin178+180sin18090=cot1:

L.H.S.= 2sin2+4sin4++178sin178+180sin18090=cot1
 
We can use the identity sinx=sin(180x) to get:

L.H.S.= 2sin2+178sin178+180sin180+4sin4+90=cot1

We can simplify to get:

L.H.S.= 2(sin2+sin4++sin88)+sin90

We can multiply by sin1sin1 to get:

L.H.S.= 2(sin2sin1+sin4sin1++sin88sin1)+sin90sin1sin1

Then, we can use the sum-to-product (or Prosthaphaeresis :)) identities to get:

L.H.S.= cos1cos3+cos3cos5++cos87cos89+sin90sin1sin1

We can cancel the terms to get:

L.H.S.= cos1cos89+cos89cos912sin1

We can simplify to get:

L.H.S.= cos1cos89+cos912sin1

We can use the identity cosx=cos(180x) to get:

L.H.S.= cos1cos89cos892sin1

L.H.S.= cos1sin1=cot1 R.H.S.= cot1

L.H.S.=R.H.S.

If 2sin2+4sin4++178sin178+180sin18090=cot1, that means the average of nsinn(n=2,4,6,,180) is cot1.

Therefore, the average of nsinn(n=2,4,6,,180)is cot1.

Jul 17, 2019
 #14
avatar+501 
+2
Jul 17, 2019

3 Online Users

avatar
avatar