Questions   
Sort: 
 #2
avatar+1124 
+1
Jul 25, 2019
 #1
avatar+26400 
+3

Zan has created this iterative rule for generating sequences of whole numbers:


1) If a number is 25 or less, double the number.
2) If a number is greater than 25, subtract 12 from it.

 

Let F be the first number in a sequence generated by the rule above.

F is a "sweet number" if 16 is not a term in the sequence that starts with F.
How many of the whole numbers 1 through 50 are "sweet numbers"?

 

 1 -> 2 -> 4 -> 8 -> 16
 2 -> 4 -> 8 -> 16
 3 -> 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
 4 -> 8 -> 16
 5 -> 10 -> 20 -> 40 -> 28 -> 16
 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
 7 -> 14 -> 28 -> 16
 8 -> 16
 9 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 10 -> 20 -> 40 -> 28 -> 16
 11 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 12 -> 24 -> 48 -> 36 -> 24 sweet number
 13 -> 26 -> 14 -> 28 -> 16
 14 -> 28 -> 16
 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 16 -> 32 -> 20 -> 40 -> 28 -> 16
 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 18 -> 36 -> 24 -> 48 -> 36 sweet number
 19 -> 38 -> 26 -> 14 -> 28 -> 16
 20 -> 40 -> 28 -> 16
 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 24 -> 48 -> 36 -> 24 sweet number
 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 26 -> 14 -> 28 -> 16
 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 28 -> 16
 29 -> 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 31 -> 19 -> 38 -> 26 -> 14 -> 28 -> 16
 32 -> 20 -> 40 -> 28 -> 16
 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 35 -> 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 36 -> 24 -> 48 -> 36 sweet number
 37 -> 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 38 -> 26 -> 14 -> 28 -> 16
 39 -> 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 40 -> 28 -> 16
 41 -> 29 -> 17 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 43 -> 31 -> 19 -> 38 -> 26 -> 14 -> 28 -> 16
 44 -> 32 -> 20 -> 40 -> 28 -> 16
 45 -> 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 47 -> 35 -> 23 -> 46 -> 34 -> 22 -> 44 -> 32 -> 20 -> 40 -> 28 -> 16
 48 -> 36 -> 24 -> 48 sweet number
 49 -> 37 -> 25 -> 50 -> 38 -> 26 -> 14 -> 28 -> 16
 50 -> 38 -> 26 -> 14 -> 28 -> 16

 

There are 16 sweet number:
  3 -> 6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
  6 -> 12 -> 24 -> 48 -> 36 -> 24 sweet number
  9 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 12 -> 24 -> 48 -> 36 -> 24 sweet number
 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 18 -> 36 -> 24 -> 48 -> 36 sweet number
 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 24 -> 48 -> 36 -> 24 sweet number
 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 36 -> 24 -> 48 -> 36 sweet number
 39 -> 27 -> 15 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 45 -> 33 -> 21 -> 42 -> 30 -> 18 -> 36 -> 24 -> 48 -> 36 sweet number
 48 -> 36 -> 24 -> 48 sweet number

 

laugh

Jul 25, 2019
 #1
avatar+9491 
+5

(This question reminds me of this solution smiley)

 

m∠EFH  =  m∠EGF   because they are both right angles

m∠FEH  =  m∠GEF   because they are the same angle

 

So by the AA similarity theorem,  △EFH ~ △EGF

 

EF / EH  =  EG / EF

                                  Multiply both sides of the equation by  EF

EF2 / EH  =  EG

                                  Multiply both sides of the equation by  EH

EF2  =  (EG)(EH)

                                  Take the square root of both sides.

EF  = \(\sqrt{\text{(EG)(EH)}}\)

 

By the way, welcome to the forum! smiley

Jul 25, 2019
 #1
avatar+26400 
+3

"Modulo \(m\) graph paper" consists of a grid of \(m^2\) points, representing all pairs of integer residues \((x,y)\) where \((0\le x)\) .
To graph a congruence on modulo m graph paper, we mark every point \((x,y)\) that satisfies the congruence.
For example, a graph of \(y\equiv x^2\pmod 5\)  would consist of the points \((0,0),\ (1,1),\ (2,4),\ (3,4),\ \text{and}\ (4,1)\).

 

The graph of
\(3x\equiv 4y-1 \pmod{35}\)
has a single x-intercept \((x_0,0)\)  and a single y-intercept \((0, y_0)\), where \(0\le x_0,y_0<35\).

 

What is the value of \(x_0+y_0\)?

 

\(\begin{array}{|lrclrcl|} \hline P(x_0,\ 0): & 3x &\equiv& 4y-1 \pmod{35} \\ & 3x_0 &\equiv& 4\cdot 0 -1 \pmod{35} \\ & 3x_0 &\equiv& -1 \pmod{35} \\\\ & 3x_0 &=& -1 +35n \quad n\in \mathbb{Z} \\ & x_0 &=& \dfrac{-1 +35n} {3} \\ & x_0 &=& \dfrac{-1 +36n-n} {3} \\ & x_0 &=& 12n-\underbrace{\dfrac{1+n} {3}}_{=a}\quad a\in \mathbb{Z} \\ & x_0 &=& 12n-a & a&=& \dfrac{1+n} {3} \\ & & & & 3a&=& 1+n \\ & & & &\mathbf{ n}&=&\mathbf{ 3a-1} \\ & x_0 &=& 12(3a-1)-a \\ & x_0 &=& 36a-12-a \\ & x_0 &=& -12+35a \\\\ & x_0&\equiv& -12 \pmod{35} \\ & x_0&\equiv& 35 -12 \pmod{35} \\ & x_0&\equiv& 23 \pmod{35} \\ & \mathbf{x_0}&=& \mathbf{23} \qquad 0\leq x_0 < 35\\ \hline \end{array}\)

\(\begin{array}{|lrclrcl|} \hline P(0,\ y_0): & 3x &\equiv& 4y-1 \pmod{35} \\ & 0 &\equiv& 4y_0 -1 \pmod{35} \quad | \quad \cdot (-1) \\ & 0 &\equiv& -4y_0 +1 \pmod{35} \\ \\ & 0 &=& -4y_0 +1 +35n \quad n\in \mathbb{Z} \quad | \quad +4y_0 \\ & 4y_0 &=& 1 +35n \quad | \quad : 4 \\ & y_0 &=& \dfrac{1 +35n} {4} \\ & y_0 &=& \dfrac{1 +36n-n} {4} \\ & y_0 &=& 9n+\underbrace{\dfrac{1-n} {4}}_{=a}\quad a\in \mathbb{Z} \\ & y_0 &=& 9n+a & a&=& \dfrac{1-n} {4} \\ & & & & 4a&=& 1-n \\ & & & &\mathbf{ n}&=&\mathbf{ 1-4a} \\ & y_0 &=& 9(1-4a)+a \\ & y_0 &=& 9-36a+a \\ & y_0 &=& 9-35a \\\\ & y_0&\equiv& 9 \pmod{35} \\ & \mathbf{y_0}&=& \mathbf{9} \qquad 0\leq y_0 < 35\\ \hline \end{array}\)

 

\(\mathbf{x_0 + y_0} = 23+9 \mathbf{=32}\)

 

laugh

Jul 25, 2019
 #2
avatar+142 
0
Jul 25, 2019

0 Online Users