Questions   
Sort: 
 #3
avatar+799 
+3
Jul 27, 2019
 #2
avatar+26400 
+4

For each positive integer n,
the set of integers \(\{0,\ 1,\ 2,\ \ldots \,\ n-1 \}\) is known as the residue system modulo n.
Within the residue system modulo \(2^4\),
let A be the sum of all invertible integers modulo \(2^4\) and
let B be the sum all of non-invertible integers modulo \(2^4\).
What is A-B?

 

The integer s of the set is invertible, if \(gcd(2^4,s)=1\)

\(\begin{array}{|c|c|c|l|} \hline \text{set of integers} & gcd(2^4,s) & \text{not invertible} & \text{modulo inverse} \\ \hline 0 & 16 & \checkmark \\ \hline 1 & 1 && 1^{-1} \pmod{16} = 1 \quad |\quad 1\cdot 1 \equiv 1 \pmod{16} \\ \hline 2 & 2 & \checkmark \\ \hline 3 & 1 && 3^{-1} \pmod{16} = 11 \quad |\quad 3\cdot 11 \equiv 1 \pmod{16} \\ \hline 4 & 4 & \checkmark \\ \hline 5 & 1 && 5^{-1} \pmod{16} = 13 \quad |\quad 5\cdot 13 \equiv 1 \pmod{16} \\ \hline 6 & 2 & \checkmark \\ \hline 7 & 1 && 7^{-1} \pmod{16} = 7 \quad |\quad 7\cdot 7 \equiv 1 \pmod{16} \\ \hline 8 & 8 & \checkmark \\ \hline 9 & 1 && 9^{-1} \pmod{16} = 9 \quad |\quad 9\cdot 9 \equiv 1 \pmod{16} \\ \hline 10 & 2 & \checkmark \\ \hline 11 & 1 && 11^{-1} \pmod{16} = 3 \quad |\quad 11\cdot 3 \equiv 1 \pmod{16} \\ \hline 12 & 4 & \checkmark \\ \hline 13 & 1 && 13^{-1} \pmod{16} = 5 \quad |\quad 13\cdot 5 \equiv 1 \pmod{16} \\ \hline 14 & 2 & \checkmark \\ \hline 15 & 1 && 15^{-1} \pmod{16} = 15 \quad |\quad 15\cdot 15 \equiv 1 \pmod{16} \\ \hline \hline \end{array}\)

 

\( A = 1+3+5+7+9+11+13+15 = \mathbf{64} \\ B = 0+2+4+6+8+10+12+14 = \mathbf{56}\)

 

 

laugh

Jul 27, 2019
 #9
avatar+118724 
0
Jul 27, 2019
 #2
avatar+501 
+1
Jul 27, 2019
Jul 26, 2019
 #1
avatar+9491 
+3

x2 + 5x  <  6

                            Subtract  6  from both sides of the inequality.

x2 + 5x - 6  <  0

                            Let's find what values of  x  make  x2 + 5x - 6  equal  0

x2 + 5x - 6  =  0

                            Factor the left side. What two numbers add to  5  and multiply to  -6 ?   -1  and  +6

(x - 1)(x + 6) = 0

                            Set each factor equal to zero and solve for  x

x - 1  =  0     or     x + 6  =  0

 

 

x  =  1                   x  =  -6

 

   

Since a graph of   y  =  x2 + 5x - 6  is a parabola, we can be sure that

 

 

the values of  x  that would make  y < 0  fall in one of these two intervals:

 

either   the interval  (-6, 1)   or   the interval  (-∞, -6) U (1, ∞)

 

 

   

To determine which interval is the solution set, let's test a number in both of them.

 

   
0  is a number in the interval  (-6, 1)

 

 

If   x  =  0   then   y  =  (0)2 + 5(0) - 6  =  -6

 

And   -6 < 0   so we know  0  should be included.

 

 

   
2  is a number in the interval  (-∞, -6) U (1, ∞)

 

 

If   x  =  2   then   y  =  (2)2 + 5(2) - 6  =  8

 

And  2  > 0   so we know  2  should not be included.

 

 

   
So we can be sure that   x2 + 5x - 6  <  0   if and only if  x  is in the interval  (-6, 1)  

 

Check: https://www.desmos.com/calculator/ovccl7zguc

Jul 26, 2019

1 Online Users