Questions   
Sort: 
 #2
avatar+26370 
+2

Part 2

 

(b) Find the sum of all the numbers on the black squares. (|a| < 1 and |b| < 1)

 

Sum of all the numbers on the black squares:

\(1 \\ +a^2+ab+b^2 \\ +a^4+a^3b+a^2b^2+ab^3+b^4 \\ +a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6 \\ +\ldots\)

 

Infinite sum:
\(\sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l-k}b^k \right) \)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l-k}b^k \right)} \\ &=& \sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l}a^{-k}b^k \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l}\left( \sum \limits_{k=0}^{2l} a^{-k}b^k \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \sum \limits_{k=0}^{2l} \left(\dfrac{b}{a}\right)^k \right) \quad | \quad \sum \limits_{k=0}^{2l} \left(\dfrac{b}{a}\right)^k = \dfrac{1- \left(\dfrac{b}{a}\right)^{2l+1} }{1-\dfrac{b}{a} } \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \dfrac{1- \left(\dfrac{b}{a}\right)^{2l+1} }{1-\dfrac{b}{a} } \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \dfrac{a- \left(\dfrac{b}{a}\right)^{2l}b }{a-b } \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} a^{2l} \left( a- \left(\dfrac{b}{a}\right)^{2l}b \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} \left( a^{2l+1}- \left(\dfrac{ a^{2l}b^{2l}}{a^{2l}}\right)b \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} \left( a^{2l+1}- b^{2l+1} \right) \\ &=& \dfrac{1}{(a-b)} \left( \sum \limits_{l=0}^{\infty} \left( a^{2l+1} \right) - \sum \limits_{l=0}^{\infty} \left( b^{2l+1} \right) \right) \\ &=& \dfrac{1}{(a-b)} \left( a\sum \limits_{l=0}^{\infty} a^{2l} - b\sum \limits_{l=0}^{\infty} b^{2l} \right) \quad | \quad \sum \limits_{l=0}^{\infty} a^{2l} = \dfrac{1}{1-a^2},\ \sum \limits_{l=0}^{\infty} b^{2l} = \dfrac{1}{1-b^2} \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a}{1-a^2} - \dfrac{b}{1-b^2} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a(1-b^2)-b(1-a^2)}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a-ab^2-b+ba^2}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{(a-b)+ab(a-b)}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{(a-b)(1+ab)}{(1-a^2)(1-b^2)} \right) \\ &=& \mathbf{ \dfrac{1+ab}{(1-a^2)(1-b^2)} } \\ \hline \end{array}\)

 

laugh

Dec 10, 2019

7 Online Users

avatar
avatar
avatar
avatar
avatar