Let n and k be positive integers such that n<10^6 and
\(\dbinom{13}{13} + \dbinom{14}{13} + \dbinom{15}{13} + \dots + \dbinom{52}{13} + \dbinom{53}{13} + \dbinom{54}{13} = \dbinom{n}{k}\).
Find the value of n and k.
see Hockey-stick identity: https://en.wikipedia.org/wiki/Hockey-stick_identity
\(\dbinom{13}{13} + \dbinom{14}{13} + \dbinom{15}{13} + \dots + \dbinom{52}{13} + \dbinom{53}{13} + \dbinom{54}{13} = \dbinom{55}{14}\)