Questions   
Sort: 
 #1
avatar+26388 
+4

A stick has a length of \(5\) units. The stick is then broken at two points, chosen at random.

What is the probability that all three resulting pieces are longer than \(1\) unit?

 

 

The probability that all three resulting pieces are longer than \(1\) unit = \(\dfrac{ A_{\color{darkorange}orange} } {A} \)

\(\begin{array}{|rcll|} \hline H^2 + \left(\dfrac{S}{2}\right)^2 &=& S^2 \\ H^2 &=& S^2 -\dfrac{S^2}{4} \\ H^2 &=& \dfrac{3S^2}{4} \qquad \mathbf{H=\dfrac{S\sqrt{3}}{2}} \qquad (1) \\ S^2 &=& \dfrac{4H^2}{3} \\ S &=& \dfrac{2H}{\sqrt{3}} * \dfrac{\sqrt{3}}{\sqrt{3}} \\ \mathbf{S} &=& \mathbf{\dfrac{2H\sqrt{3}}{3}} \qquad (2) \\ \hline S &=& \dfrac{2H\sqrt{3}}{3} \quad | \quad H = 5 \\ \mathbf{S} &=& \mathbf{\dfrac{10\sqrt{3}}{3}} \\ \hline 2A &=& H*S \quad | \quad H=5,\ \mathbf{S=\dfrac{10\sqrt{3}}{3}} \\ \mathbf{2A} &=& \mathbf{\dfrac{50\sqrt{3}}{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \tan(30^\circ) &=& \dfrac{1}{x} \quad | \quad \tan(30^\circ) = \dfrac{1}{\sqrt{3}}\\ \dfrac{1}{\sqrt{3}} &=& \dfrac{1}{x} \\ \mathbf{ x } &=& \mathbf{\sqrt{3}} \\ \hline \mathbf{s} &=& \mathbf{S-2x} \quad | \quad \mathbf{S=\dfrac{10\sqrt{3}}{3}},\ \mathbf{ x =\sqrt{3}} \\ s &=& \dfrac{10\sqrt{3}}{3}-2\sqrt{3} \\ s &=& \dfrac{10\sqrt{3}}{3}-\dfrac{6\sqrt{3}}{3} \\ \mathbf{ s } &=& \mathbf{\dfrac{4\sqrt{3}}{3}} \\ \hline \mathbf{h^2 + \left(\dfrac{s}{2}\right)^2} &=& \mathbf{s^2} \\ h^2 &=& s^2 -\dfrac{s^2}{4} \\ h^2 &=& \dfrac{3s^2}{4} \\ \mathbf{h} &=& \mathbf{\dfrac{s\sqrt{3}}{2}}\quad | \quad \mathbf{ s =\dfrac{4\sqrt{3}}{3}} \\ h &=& \mathbf{\dfrac{\dfrac{4\sqrt{3}}{3}\sqrt{3}}{2}} \\ h &=& \dfrac{4}{2} \\ \mathbf{h} &=& \mathbf{2} \\ \hline 2A_{\color{darkorange}orange}&=& h*s \quad | \quad h=2,\ \mathbf{ s=\dfrac{4\sqrt{3}}{3}} \\ 2A_{\color{darkorange}orange} &=& 2*\dfrac{4\sqrt{3}}{3} \\ \mathbf{2A_{\color{darkorange}orange}} &=& \mathbf{\dfrac{8\sqrt{3}}{3}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \dfrac{ A_{\color{darkorange}orange} } {A} &=& \dfrac{ 2A_{\color{darkorange}orange} } {2A} \\\\ &=& \dfrac{ \dfrac{8\sqrt{3}}{3} } {\dfrac{50\sqrt{3}}{3}} \\\\ &=& \dfrac{8} {50} \\\\ \mathbf{ \dfrac{ A_{\color{darkorange}orange} } {A} } &=& \mathbf{ \dfrac{4}{25} } \\ \hline \end{array}\)

 

 

laugh

Aug 5, 2020
 #1
avatar+26388 
+3

How do you work out what y and z are if x=y (mod z), where 7x+1=0 mod 3, x=0 mod 2,
without guessing and checking, and finding the LCM?

 

\(\begin{array}{|lrcll|} \hline & 7x+1 &\equiv& 0 \pmod{ 3 } & \text{or} \\ & 7x+1 &=& 0 + 3n,\ n\in \mathbb{Z} \\ & 7x+1 &=& 3n \\ (1) & \mathbf{7x} &=& \mathbf{3n-1} \\ \hline & x &\equiv& 0 \pmod{ 2 } & \text{or}\\ & x &=& 0 + 2m,\ m\in \mathbb{Z} \\ & x &=& 2m \quad | \quad *7 \\ (2) & \mathbf{7x} &=& \mathbf{14m} \\ \hline & \mathbf{7x} = 3n-1 &=& 14m \\ & 3n-1 &=& 14m \\ (3) & \mathbf{3n-14m} &=& \mathbf{1} \\ \hline \end{array} \)

 

The Euler Method: Source see: https://www.math.nyu.edu/faculty/hausner/euler.pdf

 

\(\mathbf{3n-14m=1}\qquad\) Take this equation modulo 3 ( the smallest coefficient ).

\(\begin{array}{|rcll|} \hline \mathbf{3n-14m} &=& \mathbf{1} \\ && \text{Take this equation modulo $3$ ( the smallest coefficient )}. \\ \text{This yields} \\ 3n &=& 14m+1 \\ n &=& \dfrac{14m+1}{3} \\ n &=& \dfrac{15m-m+1}{3} \\ n &=& 5m+\dfrac{1-m}{3} \\ \text{We get } \mathbf{n} &=& \mathbf{5m+a},\ \text{where $\mathbf{a}$ is a new variable } \\ \hline a &=& \dfrac{1-m}{3} \\ 3a &=& 1-m \\ \mathbf{m} &=& \mathbf{1-3a} \qquad \text{( we have finished, no fraction there )}\\ \hline \text{Now go back to the} \\ \text{"x" equation (2) to get } \mathbf{x}&=&\mathbf{2m}. \\ x &=& 2(1-3a) \\ x &=& 2-6a \qquad \text{or} \\ \mathbf{x} &\equiv& \mathbf{2 \pmod{6}}\quad | \quad (x=y \pmod{z}) \\ \hline y=2,\ z=6 \\ \hline \end{array}\)

 

 

 

laugh

Aug 5, 2020
 #11
avatar+118667 
+4

a)

\(\text{Prove that   }  n^3 = n + 3n(n - 1) + 6 \binom{n}{3}\\ \text{by counting the number of ordered triples (a, b) of positive integers}, \\\text {where }   1 \le a,b,c \le   \text{in two different ways.}\\ Where \;\;\;n\ge3\;\;\;and \;\;\;n\in Z\)

 

I am going to prove this using Induction.

 

STEP 1

Prove true for n=3

\(LHS=n^3 \\ LHS=3^3 \\ LHS=27\\ RHS= n + 3n(n - 1) + 6 \binom{n}{3}\\ RHS= 3 + 3*3(3 - 1) + 6 \binom{3}{3}\\ RHS= 3 + 18 + 6 \\ RHS=27\\ RHS=LHS\\ \text{So the statement is true for n=3}\)

 

STEP 2

If true for n=k prove true for n=k+1

so we can assume

\(k^3=k+3k(k-1)+6\binom{k}{3}\\ k^3=k+3k^2-3k+6\binom{k}{3}\\ k^3=3k^2-2k+6\binom{k}{3}\\\)

Now I need to prove it will be true for n=k+1

i.e.  Prove

\((k+1)^3=(k+1)+3(k+1)(k+1-1)+6\binom{k+1}{3}\\ (k+1)^3=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\ \qquad \qquad \qquad \text{An aside:}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)!}{3!(k+1-3)!}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{k!(k+1)}{3!(k-3)!(k-2)}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k-2)+3}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\\\)

 

\(LHS=(k+1)^3\\ LHS=k^3+3k^2+3k+1\)

 

\(RHS=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\ RHS=(k+1)+3(k+1)(k)+6\left[ \binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\right]\\ RHS=k+1+3k^2+3k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=1+3k^2+4k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=3k^2-2k+1+6 \binom{k}{3}+6k+\frac{6*3}{k-2}*\binom{k}{3}\\ substituting\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{k!}{3!(k-3)!}\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{(k-3)!(k-2)(k-1)k}{3!(k-3)!}\\ RHS=k^3+6k+1+\frac{6*3}{1}*\frac{(k-1)k}{3!}\\ RHS=k^3+6k+1+3k^2-3k\\ RHS=k^3+3k^2+3k+1\\ RHS=LHS\\~\\ \text{So if it is true for n=k then it will be true also for n=k+1} \)

 

Step 3

Since it is true for n=3 it must be true for n=4, n=5, n=6,  ....

Hence it must be true for all integer n where n greater or equal to 3.

 

 

 

 

 

LaTex:

\text{Prove that   }  n^3 = n + 3n(n - 1) + 6 \binom{n}{3}\\
 \text{by counting the number of ordered triples (a, b) of positive integers}, 
\\\text {where }   1 \le a,b,c \le   \text{in two different ways.}\\
Where \;\;\;n\ge3\;\;\;and \;\;\;n\in Z

 

LHS=n^3        \\                              
LHS=3^3 \\
LHS=27\\
RHS= n + 3n(n - 1) + 6 \binom{n}{3}\\
RHS= 3 + 3*3(3 - 1) + 6 \binom{3}{3}\\
RHS= 3 + 18 + 6 \\
RHS=27\\
RHS=LHS\\
\text{So the statement is true for n=3}

 

k^3=k+3k(k-1)+6\binom{k}{3}\\
k^3=k+3k^2-3k+6\binom{k}{3}\\
k^3=3k^2-2k+6\binom{k}{3}\\

 

(k+1)^3=(k+1)+3(k+1)(k+1-1)+6\binom{k+1}{3}\\
(k+1)^3=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\
\qquad \qquad \qquad \text{An aside:}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)!}{3!(k+1-3)!}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{k!(k+1)}{3!(k-3)!(k-2)}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k-2)+3}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\\

 

LHS=(k+1)^3\\
LHS=k^3+3k^2+3k+1

 

RHS=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\
RHS=(k+1)+3(k+1)(k)+6\left[ \binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\right]\\
RHS=k+1+3k^2+3k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=1+3k^2+4k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=3k^2-2k+1+6 \binom{k}{3}+6k+\frac{6*3}{k-2}*\binom{k}{3}\\
substituting\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{k!}{3!(k-3)!}\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{(k-3)!(k-2)(k-1)k}{3!(k-3)!}\\
RHS=k^3+6k+1+\frac{6*3}{1}*\frac{(k-1)k}{3!}\\
RHS=k^3+6k+1+3k^2-3k\\
RHS=k^3+3k^2+3k+1\\
RHS=LHS\\~\\
\text{So if it is true for n=k then it will be true also for n=k+1}

 

 


 

Aug 5, 2020

1 Online Users

avatar