a)
\(\text{Prove that } n^3 = n + 3n(n - 1) + 6 \binom{n}{3}\\ \text{by counting the number of ordered triples (a, b) of positive integers}, \\\text {where } 1 \le a,b,c \le \text{in two different ways.}\\ Where \;\;\;n\ge3\;\;\;and \;\;\;n\in Z\)
I am going to prove this using Induction.
STEP 1
Prove true for n=3
\(LHS=n^3 \\ LHS=3^3 \\ LHS=27\\ RHS= n + 3n(n - 1) + 6 \binom{n}{3}\\ RHS= 3 + 3*3(3 - 1) + 6 \binom{3}{3}\\ RHS= 3 + 18 + 6 \\ RHS=27\\ RHS=LHS\\ \text{So the statement is true for n=3}\)
STEP 2
If true for n=k prove true for n=k+1
so we can assume
\(k^3=k+3k(k-1)+6\binom{k}{3}\\ k^3=k+3k^2-3k+6\binom{k}{3}\\ k^3=3k^2-2k+6\binom{k}{3}\\\)
Now I need to prove it will be true for n=k+1
i.e. Prove
\((k+1)^3=(k+1)+3(k+1)(k+1-1)+6\binom{k+1}{3}\\ (k+1)^3=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\ \qquad \qquad \qquad \text{An aside:}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)!}{3!(k+1-3)!}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{k!(k+1)}{3!(k-3)!(k-2)}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\frac{(k-2)+3}{(k-2)}*\binom{k}{3}\\ \qquad \qquad \qquad \binom{k+1}{3}=\binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\\\)
\(LHS=(k+1)^3\\ LHS=k^3+3k^2+3k+1\)
\(RHS=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\ RHS=(k+1)+3(k+1)(k)+6\left[ \binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\right]\\ RHS=k+1+3k^2+3k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=1+3k^2+4k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=3k^2-2k+1+6 \binom{k}{3}+6k+\frac{6*3}{k-2}*\binom{k}{3}\\ substituting\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\binom{k}{3}\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{k!}{3!(k-3)!}\\ RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{(k-3)!(k-2)(k-1)k}{3!(k-3)!}\\ RHS=k^3+6k+1+\frac{6*3}{1}*\frac{(k-1)k}{3!}\\ RHS=k^3+6k+1+3k^2-3k\\ RHS=k^3+3k^2+3k+1\\ RHS=LHS\\~\\ \text{So if it is true for n=k then it will be true also for n=k+1} \)
Step 3
Since it is true for n=3 it must be true for n=4, n=5, n=6, ....
Hence it must be true for all integer n where n greater or equal to 3.
LaTex:
\text{Prove that } n^3 = n + 3n(n - 1) + 6 \binom{n}{3}\\
\text{by counting the number of ordered triples (a, b) of positive integers},
\\\text {where } 1 \le a,b,c \le \text{in two different ways.}\\
Where \;\;\;n\ge3\;\;\;and \;\;\;n\in Z
LHS=n^3 \\
LHS=3^3 \\
LHS=27\\
RHS= n + 3n(n - 1) + 6 \binom{n}{3}\\
RHS= 3 + 3*3(3 - 1) + 6 \binom{3}{3}\\
RHS= 3 + 18 + 6 \\
RHS=27\\
RHS=LHS\\
\text{So the statement is true for n=3}
k^3=k+3k(k-1)+6\binom{k}{3}\\
k^3=k+3k^2-3k+6\binom{k}{3}\\
k^3=3k^2-2k+6\binom{k}{3}\\
(k+1)^3=(k+1)+3(k+1)(k+1-1)+6\binom{k+1}{3}\\
(k+1)^3=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\
\qquad \qquad \qquad \text{An aside:}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)!}{3!(k+1-3)!}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{k!(k+1)}{3!(k-3)!(k-2)}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k+1)}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\frac{(k-2)+3}{(k-2)}*\binom{k}{3}\\
\qquad \qquad \qquad \binom{k+1}{3}=\binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\\
LHS=(k+1)^3\\
LHS=k^3+3k^2+3k+1
RHS=(k+1)+3(k+1)(k)+6\binom{k+1}{3}\\
RHS=(k+1)+3(k+1)(k)+6\left[ \binom{k}{3}+\frac{3}{k-2}*\binom{k}{3}\right]\\
RHS=k+1+3k^2+3k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=1+3k^2+4k+6 \binom{k}{3}+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=3k^2-2k+1+6 \binom{k}{3}+6k+\frac{6*3}{k-2}*\binom{k}{3}\\
substituting\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\binom{k}{3}\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{k!}{3!(k-3)!}\\
RHS=k^3+6k+1+\frac{6*3}{k-2}*\frac{(k-3)!(k-2)(k-1)k}{3!(k-3)!}\\
RHS=k^3+6k+1+\frac{6*3}{1}*\frac{(k-1)k}{3!}\\
RHS=k^3+6k+1+3k^2-3k\\
RHS=k^3+3k^2+3k+1\\
RHS=LHS\\~\\
\text{So if it is true for n=k then it will be true also for n=k+1}