Questions   
Sort: 
 #1
avatar+2125 
0

 

Find the constant $k$ such that the quadratic $2x^2 + 3x + 8k + 3x^2 + 2x + k$ has a double root.  

 

                                                2x2 + 3x + 8k + 3x2 + 2x + k    

 

                                                combine like terms, and arrange in standard form ax2 + bx + c  

 

                                                 5x2 + 5x + 9k  

 

                                                 an equation has a double root when its discriminant equals zero   

 

                                                 b2 – 4ac =  0  

 

                                                 52 – (4)(5) • 9k  =  0  

 

                                                         25 – 180k  =  0  

 

                                                              – 180k  =  – 25  

 

                                                                       k  =  25 / 180  

 

                                                                       k  =  5 / 36  

.

Nov 17, 2023
 #1
avatar+2125 
0

 

                                      (8/125)*___ = 5/2  

 

 

                                         8          x          5  

                                      ––––  •  –––  =  –––  

                                       125        1          2  

 

divide both sides by 8 / 125  

                                                             5           8  

                                                    x  =  –––  ÷  ––––   

                                                             2         125  

 

to divide by a fraction invert and multiply  

 

                                                             5         125  

                                                    x  =  –––  •  ––––   

                                                             2           8    

 

                                                               5         125          625  

                                                    x   =   –––  •  ––––   =   –––––   

                                                               2           8             16  

.

Nov 17, 2023
Nov 16, 2023
Nov 15, 2023
Nov 14, 2023
 #1
avatar+762 
0
Nov 14, 2023
Nov 13, 2023

0 Online Users