Questions   
Sort: 
 #105
avatar+118723 
0

@@ End of Day Wrap    Mon 17/8/15     Sydney, Australia Time   12:15am       ♪ ♫   

(Yes it is Tuesday already  )

Hello everyone,

Well our great answers were delivered by TitaniumRome, Alan, Radix, Heureka, Rubenhh, CPhill and jdh3010.    Thanks guys     

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts:

 

1) Just one of the social posts :)         To many to name. Thanks MG for getting it underway 

2)  Perfect square                               Melody

3) The n'th derivative of 10^-x            Thanks CPhill and Heureka

4) Exponential growth.                        Thanks CPhill

5) Understanding quadratic algebra      Thanks Alan and Melody.

6) There are also a number of fractional logic problems on the latest page.  Page 1956.

Some of these problems are difficult.  Heureka, Alan and Radiz have given some great answers Thanks 

I have marked them with a " ? " in the left hand margin.

  

                       ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                       ♫♪  ♪ ♫ 

Aug 17, 2015
 #1
avatar+26400 
+5

June had twice as many apples as oranges. Ken had 1/4 as many oranges as apples. The number of oranges Ken had was 2/9 as many as the number of apples June had. Ken had 120 apples and oranges.

(a) express the number of oranges June had as a fraction of the number of apples Ken had. Give you answers in its SIMPLEST FORM.

 

$$\small{
\begin{array}{lrcl}
& O_1 &=& \text{ oranges June }\\
& A_1 &=& \text{ apples June }\\\\
& O_2 &=& \text{ oranges Ken }\\
& A_2 &=& \text{ apples Ken }\\\\
(1) & A_1 &=& 2\cdot O_1\\
(2) & O_2 &=& \frac14 \cdot A_2 \\\\
(3) & O_2 &=& \frac29\cdot A_1 \\\\
(4) & 120 &=& O_2 + A_2\\\\\\
(1), (2), (3) & \frac14 \cdot A_2 &=& \frac29 \cdot A_1 \quad |\quad A_1 = 2\cdot O_1 \\\\
& \frac14 \cdot A_2 &=& \frac29 \cdot 2 \cdot O_1 \\\\
& \frac14 \cdot A_2 &=& \frac49 \cdot O_1 \\\\
& O_1 &=& \frac14 \cdot \frac94 \cdot A_2 \\\\
& \mathbf{O_1} & \mathbf{=} & \mathbf{ \frac9{16} \cdot A_2 }\\\\
\end{array}
}$$

 

The number of oranges June had is 9/16 of the number of apples Ken had.

 

$$\small{
\begin{array}{lrcl}
(A_2?) & 120 &=& O_2 + A_2 \qquad | \qquad O_2 = \frac14 \cdot A_2\\\\
& 120 &=& \frac14 \cdot A_2 + A_2\\\\
&120 &=& \frac54 \cdot A_2\\\\
& A_2 &=& 120 \cdot \frac45 \\\\
& \mathbf{A_2} & \mathbf{=} & \mathbf{96 }\\\\\\
(O_1?) &O_1 &=& \frac9{16}\cdot A_2 \\\\
& O_1 &=& \frac9{16} \cdot 96 \\\\
& \mathbf{O_1} & \mathbf{=} & \mathbf{54 }\\\\\\
(A_1?) &A_1 &=& 2\cdot O_1\\\\
& A_1 &=&2 \cdot 54\\\\
& \mathbf{A_1} & \mathbf{=} & \mathbf{ 108 }\\\\\\
(O_2?) &O_2 &=& \frac14\cdot A_2 \\\\
& O_2 &=& \frac14 \cdot 96\\\\
& \mathbf{O_2} & \mathbf{=} & \mathbf{ 24 }\\\\\\
\end{array}
}$$

 

$$\small{
\begin{array}{|r|r|r|}
\hline
\text {oranges} & \text{apples} & \\
\hline
54 & 108 & \text{June} \\
\hline
24 & 96 &\text{Ken}\\
\hline
\end{array}
}$$

 

Aug 17, 2015
 #1
avatar+33661 
+10
Aug 17, 2015
 #2
avatar+33661 
+5
Aug 17, 2015

1 Online Users