Questions   
Sort: 
 #1
avatar+2499 
0
Jan 7, 2016
 #2
avatar+26400 
+5

what is 111...1(total of one hundred ones) divided by 1,111,111 ( answer with remainder, not fraction or decimal )

 

You can divide the number in  arbitrarily sections.

Devide all parts by 1 111 111, but attach the remainder of the previous calculation left.

 

 

Example:

\(\underbrace{1111111}_{1.\ \text{partition}}\ \underbrace{1111111}_{2.\ \text{partition}}\ \underbrace{1111111}_{3.\ \text{partition}}\ \underbrace{1111111}_{4.\ \text{partition}}\ \underbrace{1111111}_{5.\ \text{partition}}\ \underbrace{1111111}_{6.\ \text{partition}}\ \underbrace{1111111}_{7.\ \text{partition}}\ \\ \underbrace{1111111}_{8.\ \text{partition}}\ \underbrace{1111111}_{9.\ \text{partition}}\ \underbrace{1111111}_{10.\ \text{partition}}\ \underbrace{1111111}_{11.\ \text{partition}}\ \underbrace{1111111}_{12.\ \text{partition}}\ \underbrace{1111111}_{13.\ \text{partition}}\ \underbrace{1111111}_{14.\ \text{partition}}\ \underbrace{11}_{15.\ \text{partition}}\ \)

 

\(\begin{array}{lcl} \underbrace{1111111}_{1.\ \text{partition}} : 1\ 111\ 111 = 1 \quad \text{ Remainder } = \color{red}{0} \\ \text{attach Remainder}\\ {\color{red}0}\underbrace{1111111}_{2.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = \color{green}{0} \\ \text{attach Remainder}\\ {\color{green}0}\underbrace{1111111}_{3.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{4.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{5.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{6.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{7.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{8.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{9.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{10.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{11.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{12.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{13.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{1111111}_{14.\ \text{partition}}: 1\ 111\ 111 = 1 \quad \text{ Remainder } = 0 \\ \text{attach Remainder}\\ 0\underbrace{11}_{15.\ \text{partition}}: 1\ 111\ 111 = 0 \quad \text{ Remainder } = \mathbf{11} \\ \end{array}\)

 

 

laugh

Jan 7, 2016
 #7
avatar+26400 
+10

Hallo aditya@calc.com,

 

sorry i have no closed solution. Here my way so far.

 

\(\small{ \begin{array}{rcl} 3^{2n+2} -8n -9 &=& 3^{2n}\cdot 3^2-8n-9 \\ &=& 3^{2n}\cdot 9-8n-9 \\ &=& (3^2)^n\cdot 9-8n-9 \\ &=& 9^n\cdot 9-8n-9 \\ &=& 9^{n+1}-8n-9 \\ &=& (1+8)^{n+1}-8n-9 \\ &=& -8n-9 + (1+8)^{n+1}\\ &=& -8n-9 + \underbrace{\binom{n+1}{0}+ \binom{n+1}{1}\cdot 8}_{=8n+9} + \binom{n+1}{2}\cdot 8^2 + \binom{n+1}{3}\cdot 8^3 + \binom{n+1}{4}\cdot 8^4 +\cdots \\ && + \binom{n+1}{n-1}\cdot 8^{n-1} + \binom{n+1}{n}\cdot 8^{n} + \binom{n+1}{n+1}\cdot 8^{n+1} \\\\ &=& \binom{n+1}{2}\cdot 8^2 + \binom{n+1}{3}\cdot 8^3 + \binom{n+1}{4}\cdot 8^4 +\cdots + \binom{n+1}{n-1}\cdot 8^{n-1} + \binom{n+1}{n}\cdot 8^{n} + \binom{n+1}{n+1}\cdot 8^{n+1} \\\\ &=& \binom{n+1}{2}\cdot 2^6 + \binom{n+1}{3}\cdot 2^9 + \binom{n+1}{4}\cdot 2^{12} +\cdots + \binom{n+1}{n-1}\cdot 2^{3n-3} + \binom{n+1}{n}\cdot 2^{3n} + \binom{n+1}{n+1}\cdot 2^{3n+3} \\ \end{array} }\)

 

 

It is not easy to factorize the binoms \(\binom{n+1}{2},~\binom{n+1}{3},~\binom{n+1}{3}\cdots\)  to get the exponent of the prim number 2 for every n

but m mimimum is 6, because we have \(2^6\)

 

It seems that (no proof !!!!)

  \(\begin{array}{rcl} \binom{n+1}{2}\cdot 2^6 &=& 2^m\cdot p \\\\ (n+1)\cdot n \cdot 2^5 &=& 2^m\cdot p \\ \end{array}\)

 

Example:

\(\begin{array}{|r|c|l|} \hline n & m & p \\ \hline 1 & 6 & 1 \\ 2 & 6 & 3 \\ \hline 3 & 7 & 3 \\ 4 & 7 & 5 \\ \hline 5 & 6 & 15 \\ 6 & 6 & 21 \\ \hline 7 & 8 & 7 \\ 8 & 8 & 9 \\ \hline 9 & 6 & 45 \\ 10 & 6 & 55 \\ \hline 11 & 7 & 33 \\ 12 & 7 & 39 \\ \hline 13 & 6 & 91 \\ 14 & 6 & 105 \\ \hline 15 & 9 & 15 \\ 16 & 9 & 17 \\ \hline 17 & 6 & 153 \\ 18 & 6 & 171 \\ \hline \cdots \\ \hline \end{array}\)

 

laugh

Jan 7, 2016

0 Online Users