Questions   
Sort: 
 #2
avatar+204 
+5
Mar 29, 2016
 #4
avatar+118723 
+10

If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]

 

 

\(m*tan(A-30)\\ =m*(tanA-tan30)\div (1+tanAtan30)\\ =m*(tanA-\frac{1}{\sqrt3})\div (1+\frac{tanA}{\sqrt3})\\ =m*(\frac{\sqrt3 tanA-1}{\sqrt3})\div (\frac{\sqrt3+tanA}{\sqrt3})\\ =m*(\frac{\sqrt3 tanA-1}{\sqrt3+tanA})\\ \)

 

\(ntan(A+120)\\=n*(tanA+tan120)\div (1-tanAtan120)\\ =n*(tanA-tan60)\div (1+tanAtan60)\\ =n*(tanA-\sqrt3)\div (1+\sqrt3 tanA)\\ =-n*(\sqrt3-tanA)\div (\sqrt3 tanA+1)\\ =-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\\ \)

 

 

\(m*\frac{ (\sqrt3 tanA-1)}{(\sqrt3+tanA)}=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\\ m=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\div \frac{ (\sqrt3 tanA-1)}{(\sqrt3+tanA)}\\ m=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\times \frac{(\sqrt3+tanA)}{ (\sqrt3 tanA-1)}\\ m=-n*\frac{(3-tan^2A)}{ (3 tan^2A-1)}\\ \)

 

\(\frac{m+n}{m-n}\\ =\left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}+n\right] \div \left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}-n\right] \\ =\left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}+\frac{n(3tan^2A-1)}{(3tan^2A-1)}\right] \div \left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}-\frac{n(3tan^2A-1)}{(3tan^2A-1)}\right] \\=\left[\frac{-n(3-tan^2A)+n(3tan^2A-1)}{(3tan^2A-1)}\right] \div \left[\frac{-n(3-tan^2A)-n(3tan^2A-1)}{(3tan^2A-1)}\right] \\=\left[-n(3-tan^2A)+n(3tan^2A-1)\right] \div \left[-n(3-tan^2A)-n(3tan^2A-1)\right] \\=\left[-(3-tan^2A)+(3tan^2A-1)\right] \div \left[-(3-tan^2A)-(3tan^2A-1)\right] \\=\left[-3+tan^2A+3tan^2A-1\right] \div \left[-3+tan^2A-3tan^2A+1\right] \\=\left[-4+4tan^2A\right] \div \left[-2-2tan^2A\right] \\=\left[-2+2tan^2A\right] \div \left[-1-tan^2A\right] \\=\frac{2(1-tan^2A)}{1+tan^2A}\)

 

\(=2(1-\frac{sin^2A}{cos^2A})\div (1+\frac{sin^2A}{cos^2A})\\ =2(\frac{cos^2A-sin^2A}{cos^2A})\div (\frac{cos^2A+sin^2A}{cos^2A})\\ =2(cos^2A-sin^2A)\div (cos^2A+sin^2A)\\ =2(cos^2A-sin^2A)\div (1)\\ =2(cos^2A-sin^2A)\\ =2cos2A\)

 

 

I've lost a negative sign somewhere - oh well, you can find it .....     :))

Mar 29, 2016
 #1
avatar+26400 
+15

If tanA+tanB=x & cotA+cotB=y, then prove that-

cot(A+B)=1/x-1/y

 

\(\begin{array}{rcll} \tan(A) + \tan(B) &=& x \\ \cot(A) + \cot(B) &=& y \end{array}\)

 

formulary

\(\begin{array}{rcll} \tan(A+B) &=& \dfrac{\tan(A) + \tan(B)}{1-\tan(A) \cdot \tan(B)} \\\\ \cot(A+B) &=& \dfrac{ \cot(A) \cdot \cot(B) - 1 } {\cot(A) + \cot(B)} \end{array}\)

 

1.

\(\begin{array}{rcll} \tan(A+B)=\dfrac{1}{\cot(A+B)} &=& \dfrac{x} {1-\tan(A) \cdot \tan(B)} \\\\ 1-\tan(A) \cdot \tan(B) &=& x\cdot \cot(A+B) \\\\ \tan(A) \cdot \tan(B)-1 &=& -x\cdot \cot(A+B) \\\\ \tan(A) \cdot \tan(B) &=& 1 -x\cdot \cot(A+B) \\\\ \dfrac{1}{\cot(A)} \cdot \dfrac{1}{\cot(B)} &=& 1 -x\cdot \cot(A+B) \\\\ \mathbf{ \cot(A) \cdot \cot(B) } &\mathbf{=}& \mathbf{ \dfrac{1}{ 1 -x\cdot \cot(A+B) } } \end{array}\)

 

2.

\(\begin{array}{rcll} \cot(A+B) &=& \dfrac{ \cot(A) \cdot \cot(B) - 1 } {y} \\\\ y\cdot \cot(A+B) &=& \cot(A) \cdot \cot(B) - 1 \\\\ 1+y\cdot \cot(A+B) &=& \cot(A) \cdot \cot(B) \\ && \cot(A) \cdot \cot(B) =\dfrac{1}{ 1 -x\cdot \cot(A+B) } \\ 1+y\cdot \cot(A+B) &=& \dfrac{1}{ 1 -x\cdot \cot(A+B) } \\ [ 1+y\cdot \cot(A+B)]\cdot[1 -x\cdot \cot(A+B)] &=& 1 \\ 1 -x\cdot \cot(A+B) + y\cdot \cot(A+B) - yx\cdot \cot^2(A+B) &=& 1 \\ -x\cdot \cot(A+B) + y\cdot \cot(A+B) - yx\cdot \cot^2(A+B) &=& 0 \quad | \quad : \cot(A+B)\\ -x + y - yx\cdot \cot(A+B) &=& 0 \\ yx\cdot \cot(A+B) &=& y -x \quad | \quad : xy\\ \cot(A+B) &=& \dfrac{y -x}{xy} \\ \cot(A+B) &=& \dfrac{y}{xy}-\dfrac{x}{xy} \\ \mathbf{ \cot(A+B)} &\mathbf{ =}&\mathbf{ \dfrac{1}{x}-\dfrac{1}{y} } \end{array}\)

laugh

.
Mar 29, 2016
 #1
avatar+33661 
+5
Mar 29, 2016

0 Online Users