If mtan(A-30)=ntan(A+120), then prove that-2*cos2A=[m+n]/[m-n]
\(m*tan(A-30)\\ =m*(tanA-tan30)\div (1+tanAtan30)\\ =m*(tanA-\frac{1}{\sqrt3})\div (1+\frac{tanA}{\sqrt3})\\ =m*(\frac{\sqrt3 tanA-1}{\sqrt3})\div (\frac{\sqrt3+tanA}{\sqrt3})\\ =m*(\frac{\sqrt3 tanA-1}{\sqrt3+tanA})\\ \)
\(ntan(A+120)\\=n*(tanA+tan120)\div (1-tanAtan120)\\ =n*(tanA-tan60)\div (1+tanAtan60)\\ =n*(tanA-\sqrt3)\div (1+\sqrt3 tanA)\\ =-n*(\sqrt3-tanA)\div (\sqrt3 tanA+1)\\ =-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\\ \)
\(m*\frac{ (\sqrt3 tanA-1)}{(\sqrt3+tanA)}=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\\ m=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\div \frac{ (\sqrt3 tanA-1)}{(\sqrt3+tanA)}\\ m=-n*\frac{(\sqrt3-tanA)}{ (\sqrt3 tanA+1)}\times \frac{(\sqrt3+tanA)}{ (\sqrt3 tanA-1)}\\ m=-n*\frac{(3-tan^2A)}{ (3 tan^2A-1)}\\ \)
\(\frac{m+n}{m-n}\\ =\left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}+n\right] \div \left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}-n\right] \\ =\left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}+\frac{n(3tan^2A-1)}{(3tan^2A-1)}\right] \div \left[\frac{-n(3-tan^2A)}{(3tan^2A-1)}-\frac{n(3tan^2A-1)}{(3tan^2A-1)}\right] \\=\left[\frac{-n(3-tan^2A)+n(3tan^2A-1)}{(3tan^2A-1)}\right] \div \left[\frac{-n(3-tan^2A)-n(3tan^2A-1)}{(3tan^2A-1)}\right] \\=\left[-n(3-tan^2A)+n(3tan^2A-1)\right] \div \left[-n(3-tan^2A)-n(3tan^2A-1)\right] \\=\left[-(3-tan^2A)+(3tan^2A-1)\right] \div \left[-(3-tan^2A)-(3tan^2A-1)\right] \\=\left[-3+tan^2A+3tan^2A-1\right] \div \left[-3+tan^2A-3tan^2A+1\right] \\=\left[-4+4tan^2A\right] \div \left[-2-2tan^2A\right] \\=\left[-2+2tan^2A\right] \div \left[-1-tan^2A\right] \\=\frac{2(1-tan^2A)}{1+tan^2A}\)
\(=2(1-\frac{sin^2A}{cos^2A})\div (1+\frac{sin^2A}{cos^2A})\\ =2(\frac{cos^2A-sin^2A}{cos^2A})\div (\frac{cos^2A+sin^2A}{cos^2A})\\ =2(cos^2A-sin^2A)\div (cos^2A+sin^2A)\\ =2(cos^2A-sin^2A)\div (1)\\ =2(cos^2A-sin^2A)\\ =2cos2A\)
I've lost a negative sign somewhere - oh well, you can find it ..... :))