From the vertical component divide both sides by cos(60): T = 10g/cos(60)
ut this into the horizontal component: F = (10g/cos(60)) * sin(60) → 10g *tan(60)
Now tan(60) = sqrt(3) so F = 10*sqrt(3)*g (g = 9.81 m/s^2)
I would call this F = 98.1*sqrt(3) N.
Alan can you please elaborate to solution.
Look at http://web2.0calc.com/questions/please-help_44184#r2 where you first asked the question.
\(-4x+3y=-41\)
\(3y=-41+4x\)
\(y=\frac{-41+4x}{3}\)
\(y=\frac{-41}{3}+\frac{4}{3}x\)
\(y=-\frac{41}{3}+\frac{4}{3}x\)
\(y=\frac{4}{3}x-\frac{41}{3}\)
\(slope=\frac{4}{3};\) up \(4,\) right \(3\) or down \(4,\) left \(3\)
\(2. \ \frac{1.5*3*4}{2}*4=36\\ 5. \ \frac{1.5*2*4}{2}*6=36 \\ \)
\(3. \\ 90 ^{\circ}-12\\ 60^{\circ}-6\sqrt{3}\\ 30^{\circ}-6\\ \frac{6*6\sqrt{3}}{2}*15=270\sqrt{3}\)
10 mill divided 8
\(\frac {cos(\Theta)\times sin(\Theta) }{cos(\Theta)}\)
\(sin(\Theta)\)
\(\frac{8}{\sqrt{2}}\)
\(\frac{8\sqrt{2}}{2}\)
\(4\sqrt{2}\)
\(5.6568542494923802...\)
\(D-2.7=1.4\)
\(D=4.1\)
\(sec(150°)\)
\(\frac{1}{cos(150°)}\)
\(\frac{1}{\frac{-\sqrt{3}}{2}}\)
\(1\times(-\frac{2}{\sqrt{3}})\)
\(-\frac{2}{\sqrt{3}}\)
\(-\frac{2\sqrt{3}}{3}\)
\(cos(300°)\)
\(\frac{1}{2}\)
\(csc(-\frac{3\pi}{4})\)
\(\frac{1}{sin(-\frac{3\pi}{4})}\)
\(\frac{1}{-\frac{\sqrt{2}}{2}}\)
\(1\times(-\frac{2}{\sqrt{2}})\)
\(-\frac{2}{\sqrt{2}}\)
\(-\frac{2\sqrt{2}}{2}\)
\(-\sqrt{2}\)
Punch it into the calculator.
D = 4.1
https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt
sin theta
or about 5.656854249492380195206754896838792314278687501507792292706...
H^2=44^2 + 33^2
H=55 feet-Length of the diagonal
44 + 33 + 55 =132 feet-the distance that Terrell walked.
L x W = area of rectangle L = W-10 (given)
(w-10) x w = 119
w^2 - 10w = 119
w^2 - 10w +25 = 119 +25 (completing the square)
(w-5)^2 = 144
w-5 = +-12
w = 5 +-12 = 17 or -7 (throw out -7)
w=17 L = w-10 = 7
Area=L x W
L=W - 10
119=[W x (W-10) ], solve for W
W=17cm
L=7cm
Area=17 x 7=119 square cm.
You are describing: cos(a) x sin(a)/cos(a) Just like an ordinary fraction, the cos(a) will cancel each other and you are left with sin(a)