Questions   
Sort: 
 #1
avatar+118724 
+5

I have not got the desired answer, perhaps another mathematician can find my error ??  Thanks :)   indecision

Also Kath, this was a super hard one, make sure you can do the easy ones first.(I know that you are struggling with these)     laugh

 

Reduce expression to single function

You cannot express as a single function because there is an equal sign.

I assume you want me to prove that the LHS=RHS.

 

 

\(\frac{sin(3\theta)}{sin(\theta)}+\frac{cos(3\theta)}{cos(\theta)}=2cot(2\theta)\)

 

You need to memorise that:

 

sin(A+B)=sinAcosB+cosAsinB   

and

cos(A+B)=cosAcosB - sinAsinB

 

so
\(sin(3\theta)\\ =sin(2\theta+\theta)\\ =sin(2\theta)cos(\theta)+cos(2sin\theta)sin(\theta)\\ and\\ cos(3\theta)\\ =cos(2\theta+\theta)\\ =cos(2\theta)cos(\theta) - sin(2\theta)sin(\theta)\\\)

 

\(\frac{sin(3\theta)}{sin(\theta)}+\frac{cos(3\theta)}{cos(\theta)}=2cot(2\theta)\)

 

 

LHS

 

\(=\frac{sin(3\theta)}{sin(\theta)}+\frac{cos(3\theta)}{cos(\theta)}\\ =\frac{sin(2\theta)cos(\theta)+cos(2\theta)sin(\theta)}{sin(\theta)}+\frac{cos(2\theta)cos(\theta) - sin(2\theta)sin(\theta)}{cos(\theta)}\\ =\frac{sin(2\theta)cos(\theta)}{sin(\theta)}+\frac{cos(2\theta)sin(\theta)}{sin(\theta)} +\frac{cos(2\theta)cos(\theta)}{cos(\theta)} - \frac{sin(2\theta)sin(\theta)}{cos(\theta)}\\ =\frac{sin(2\theta)cos(\theta)}{sin(\theta)}+\frac{cos(2\theta)}{1} +\frac{cos(2\theta)}{1} - \frac{sin(2\theta)sin(\theta)}{cos(\theta)}\\ =\frac{sin(2\theta)cos(\theta)}{sin(\theta)} - \frac{sin(2\theta)sin(\theta)}{cos(\theta)}+\frac{2cos(2\theta)}{1}\\ \)

 

 

\(=\frac{sin(2\theta)}{1}\left[\frac{cos(\theta)}{sin(\theta)} - \frac{sin(\theta)}{cos(\theta)}\right]+\frac{2cos(2\theta)}{1}\\ =\frac{sin(2\theta)}{1}\left[\frac{cos^2(\theta)}{sin(\theta)cos(\theta)} - \frac{sin^2(\theta)}{sin(\theta)cos(\theta)}\right] +\frac{2cos(2\theta)}{1}\\ =\frac{sin(2\theta)}{1}\left[\frac{cos^2(\theta)-sin^2(\theta)}{sin(\theta)cos(\theta)} \right] +\frac{2cos(2\theta)}{1}\\ =\frac{sin(2\theta)}{1}\left[\frac{cos(2\theta)}{sin(\theta)cos(\theta)} \right] +\frac{2cos(2\theta)}{1}\\ =\frac{sin(2\theta)}{1}\times2\left[\frac{cos(2\theta)}{2sin(\theta)cos(\theta)} \right] +\frac{2cos(2\theta)}{1}\\ =\frac{sin(2\theta)}{1}\times2\left[\frac{cos(2\theta)}{sin(2\theta)} \right] +\frac{2cos(2\theta)}{1}\\ =\frac{1}{1}\times2\left[\frac{cos(2\theta)}{1} \right]+\frac{2cos(2\theta)}{1}\\ =4cos(2\theta) \)

 

\(\ne RHS\)

 

It did not get  this as an equality.  It is quite likely that i made a mistake.   sad

May 25, 2016
May 24, 2016

1 Online Users