Find an equation of the circle that satisfies the given conditions.
Center (−2, 10); passes through (9, 7)
$$Circle: (x-x_0)^2+(y-y_0)^2=r^2 \qquad r=radius \quad Center(x_0,y_0)$$
$$\\\mbox{(1) Center(\textcolor[rgb]{1,0,0}{ -2}, \textcolor[rgb]{1,0,0}{10}): }\quad (x+\textcolor[rgb]{1,0,0}{2})^2+(y-\textcolor[rgb]{1,0,0}{10})^2=r^2\\
\mbox{(2) Point(\textcolor[rgb]{0,0,1}{9}, \textcolor[rgb]{0,0,1}{7}): } \quad (\textcolor[rgb]{0,0,1}{9}+2)^2+(\textcolor[rgb]{0,0,1}{7}-10)^2=r^2\\\\
\mbox{set (1)=(2): } (x+2)^2+(y-10)^2=(9+2)^2+(7-10)^2\\ \\
(x+2)^2+(y-10)^2=11^2+(-3)^2\\\\
(x+2)^2+(y-10)^2=121+9\\\\
\boxed{(x+2)^2+(y-10)^2=130}$$
.