Questions   
Sort: 
 #2
avatar+33665 
+4

Here's one approach:

 

Without loss of generality let AB = 1

 

Angle ADB = 180-80-50 = 50 so triangle ABD is isosceles and AD = AB = 1

 

Angle AEB = 180-60-80 = 40,  so AE/sin(80) = 1/sin(40) or AE = sin(80)/sin(40)

 

Angle BDE = 180-30-(40+x) = 110-x

 

Angle ADE = ADB + BDE = 50 + 110 - x = 160 - x

 

Sine rule on triangle ADE:  

 sin(x)/AD = sin(160-x)/AE or sin(x)/1 = sin(160-x)*sin(40)/sin(80)

 

Rearrange:  sin(80)*sin(x) = sin(40)*sin(160-x)

 

 sin(80)*sin(x) = sin(40)*(sin(160)*cos(x) - cos(160)*sin(x))

 

I'm sure you can take it from here (collect sin(x) terms on one side, cos(x) on the other, divide to get tan( x) ...etc.)

 

As Guest #1 notes, you should find x = 30 degrees.

.

Jun 7, 2017
 #1
avatar+9676 
0
Jun 7, 2017
 #1
avatar+26400 
+2

What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?

 

center at \((x_c=-2,\ y_c= 1 )\)

passing through point at \((x_p=-4,\ y_p= 1 )\)

\(\text{radius}^2 = r^2 = (x_c-x_p)^2+(y_c-y_p)^2\)

 

general form of the equation of a circle: \((x-x_c)^2 +(y-y_c)^2 = r^2\)

 

so we have:

\(\small{ \begin{array}{|rcll|} \hline (x-x_c)^2 +(y-y_c)^2 &=& r^2 \qquad | \quad r^2 = (x_c-x_p)^2+(y_c-y_p)^2 \\ (x-x_c)^2 +(y-y_c)^2 &=& (x_c-x_p)^2+(y_c-y_p)^2 \\ x^2-2x_c\cdot x + \not{x_c^2} + y^2-2y_c\cdot y + \not{y_c^2} &=& \not{x_c^2} -2x_cx_p + x_p^2 + \not{y_c^2}-2y_cy_p + y_p^2\\ x^2-2x_c\cdot x + y^2-2y_c\cdot y &=& -2x_cx_p + x_p^2 + -2y_cy_p + y_p^2 \\ x^2-2x_c\cdot x + y^2-2y_c\cdot y + 2x_cx_p - x_p^2 + 2y_cy_p - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + 2x_cx_p + 2y_cy_p - x_p^2 - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ \hline \end{array} } \)

 

The general form of the equation of a circle with its center \((x_c,y_c) \)and passing through point \( (x_p,y_p) \) is:

\(\mathbf{x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) = 0} \)

 

\(\small{ \begin{array}{|lrcll|} \hline x_c=-2,\ y_c= 1 \\ x_p=-4,\ y_p= 1 \\\\ & x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ & x^2+ y^2 -2\cdot (-2)\cdot x -2\cdot 1\cdot y + (-4)\cdot[2\cdot(-2)-(-4)] + 1\cdot(2\cdot 1-1) &=& 0 \\ & x^2+ y^2 +4x -2y + (-4)\cdot(-4+4) + 1\cdot(2-1) &=& 0 \\ & x^2+ y^2 +4x -2y + 0 + 1\cdot 1 &=& 0 \\ & x^2+ y^2 +4x -2y + 1 &=& 0 \\ \hline \end{array} }\)

 

The equation of the circle is \(x^2+ y^2 +4x -2y + 1 = 0 \)

 

laugh

Jun 7, 2017
 #4
avatar+15 
0
Jun 7, 2017

1 Online Users