Questions   
Sort: 
 #5
avatar+118723 
+1
Aug 16, 2017
 #1
avatar+1904 
0

To answer the first queston, first factor the polynomial function.

 

\(y={x}^{3}-{3x}^{2}+16x-48\)

 

\(y=({x}^{3}-{3x}^{2})+(16x-48)\)

 

\(y={x}^{2}(x-3)+(16x-48)\)

 

\(y={x}^{2}(x-3)+16(x-3)\)

 

\(y=({x}^{2}+16)\times(x-3)\)

 

\(y=({x}^{2}+{4}^{2})\times(x-3)\)

 

\(y=(x-4)\times(x+4)\times(x-3)\)

 

Now set each x value to zero and solve

 

\(x-4=0\)

 

\(x-4+4=0+4\)

 

\(x-0=0+4\)

 

\(x=0+4\)

 

\(x=4\)

 

\(x+4=0\)

 

\(x+4-4=0-4\)

 

\(x+0=0-4\)

 

\(x=0-4\)

 

\(x=-4\)

 

\(x-3=0\)

 

\(x-3+3=0+3\)

 

\(x-0=0+3\)

 

\(x=0+3\)

 

\(x=3\)

 

Now plug each answer to the original polynomial function to see if the answers will fit in the original polynomial function.

 

\(y={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={4}^{3}-3({4}^{2})+16(4)-48\)

 

\(0=64-3({4}^{2})+16(4)-48\)

 

\(0=64-3(16)+16(4)-48\)

 

\(0=64-48+16(4)-48\)

 

\(0=64-48+64-48\)

 

\(0=16+64-48\)

 

\(0=80-48\)

 

\(0≠32\)

 

\(y={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={(-4)}^{3}-{3(-4)}^{2}+16(-4)-48\)

 

\(0=-64-{3(-4)}^{2}+16(-4)-48\)

 

\(0=-64-3(16)+16(-4)-48\)

 

\(0=-64-48+16(-4)-48\)

 

\(0=-64-48+(-64)-48\)

 

\(0=-112+(-64)-48\)

 

\(0=-176-48\)

 

\(0≠-224\)

 

\(y={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={x}^{3}-{3x}^{2}+16x-48\)

 

\(0={3}^{3}-{3(3}^{2})+16(3)-48\)

 

\(0=27-{3(3}^{2})+16(3)-48\)

 

\(0=27-3(9)+16(3)-48\)

 

\(0=27-27+16(3)-48\)

 

\(0=27-27+48-48\)

 

\(0=0+48-48\)

 

\(0=48-48\)

 

\(0=0\)

 

The only real answer is x=3.  Becasue x=4 and x=-4 are not real answers, that means they are imaginary answers.  This means that B is the correct answer.

 

I know how to solve the second question but, because I do not know how to type it out on this forum, I will leave that to someone who does know how to answer the question and how to type it out on this forum.

Aug 16, 2017
 #2
avatar+210 
+1
Aug 16, 2017
Aug 15, 2017

1 Online Users

avatar