To answer the first queston, first factor the polynomial function.
\(y={x}^{3}-{3x}^{2}+16x-48\)
\(y=({x}^{3}-{3x}^{2})+(16x-48)\)
\(y={x}^{2}(x-3)+(16x-48)\)
\(y={x}^{2}(x-3)+16(x-3)\)
\(y=({x}^{2}+16)\times(x-3)\)
\(y=({x}^{2}+{4}^{2})\times(x-3)\)
\(y=(x-4)\times(x+4)\times(x-3)\)
Now set each x value to zero and solve
\(x-4=0\)
\(x-4+4=0+4\)
\(x-0=0+4\)
\(x=0+4\)
\(x=4\)
\(x+4=0\)
\(x+4-4=0-4\)
\(x+0=0-4\)
\(x=0-4\)
\(x=-4\)
\(x-3=0\)
\(x-3+3=0+3\)
\(x-0=0+3\)
\(x=0+3\)
\(x=3\)
Now plug each answer to the original polynomial function to see if the answers will fit in the original polynomial function.
\(y={x}^{3}-{3x}^{2}+16x-48\)
\(0={x}^{3}-{3x}^{2}+16x-48\)
\(0={4}^{3}-3({4}^{2})+16(4)-48\)
\(0=64-3({4}^{2})+16(4)-48\)
\(0=64-3(16)+16(4)-48\)
\(0=64-48+16(4)-48\)
\(0=64-48+64-48\)
\(0=16+64-48\)
\(0=80-48\)
\(0≠32\)
\(y={x}^{3}-{3x}^{2}+16x-48\)
\(0={x}^{3}-{3x}^{2}+16x-48\)
\(0={(-4)}^{3}-{3(-4)}^{2}+16(-4)-48\)
\(0=-64-{3(-4)}^{2}+16(-4)-48\)
\(0=-64-3(16)+16(-4)-48\)
\(0=-64-48+16(-4)-48\)
\(0=-64-48+(-64)-48\)
\(0=-112+(-64)-48\)
\(0=-176-48\)
\(0≠-224\)
\(y={x}^{3}-{3x}^{2}+16x-48\)
\(0={x}^{3}-{3x}^{2}+16x-48\)
\(0={3}^{3}-{3(3}^{2})+16(3)-48\)
\(0=27-{3(3}^{2})+16(3)-48\)
\(0=27-3(9)+16(3)-48\)
\(0=27-27+16(3)-48\)
\(0=27-27+48-48\)
\(0=0+48-48\)
\(0=48-48\)
\(0=0\)
The only real answer is x=3. Becasue x=4 and x=-4 are not real answers, that means they are imaginary answers. This means that B is the correct answer.
I know how to solve the second question but, because I do not know how to type it out on this forum, I will leave that to someone who does know how to answer the question and how to type it out on this forum.