Questions   
Sort: 
 #4
avatar+299 
0
Aug 17, 2017
 #3
avatar+299 
0
Aug 17, 2017
 #1
avatar+312 
0

\(\begin{bmatrix} a && b \\ c && d \end{bmatrix}*\begin{bmatrix} a && b \\ c && d \end{bmatrix}=\begin{bmatrix} a^2+b*c &&a*b+b*d \\ c*a+d*c && d^2+c*b \end{bmatrix}= \begin{bmatrix} a^2+bc && b*(a+d) \\ c*(a+d) && d^2+bc \end{bmatrix}=\begin{bmatrix} 0 && 0 \\ 0 && 0 \end{bmatrix}\)

(The multiplication of the matrices is derived from the formula: \((A*B)i,j =\sum_{k=1}^{n}a(i,k)*b(k,j)\)

 

so we have a set of equations:

1. a2+bc=0

2. b*(a+d)=0

3. c*(a+d)=0

4. d2+bc=0

 

using the first and the fourth equations, we can find that :(a2+bc)-(d2+bc)=(0)-(0)=0=a2-d2=(a-d)*(a+d). therefore, we can divide our answer to two cases:

 

first case- a=d

that means b*(a+d)=0=b*(2a) and c*(a+d)=0=c*(2a). now we have a new set of equations:

 

1. a2+bc=0

2. b*(2a)=0

3. c*(2a)=0

 

we can make it simpler:

 

1. a2+bc=0

2. b*a=0

3. c*a=0

 

now we can divide that case to two different cases:

 

a=0:

now we have 1 equation:

 

1. a2+bc=0=02+bc=bc=0. that means b or c must be equal to 0 (that or is a mathematical or: it means if both of them are 0 it works too)

 

that means the matrices that maintain the equations are of the following form:

 

\(\begin{bmatrix} 0 && b \\ c && 0 \end{bmatrix}\)(where c*b=0)

 

a is not 0:

that means we can divide the second and the third equations by a and get the set of equations:
 

1. a2+bc=0

2. b=0

3. c=0

 

that means a2+bc=a2+0*0=a2. but that means a=0, and that doesnt make any sense because we know that a CANNOT be 0. So there is no solution

 

second case- d=-a

now we can derive a simpler set of equations:

 

1. a2+bc=0

2. b*(a-a)=0=b*0=0

3. c*(a-a)=0=c*0=0

 

now we have one equation- a2+bc=0:

 

a2+bc=0/ -a2

bc=-a2

 

that gives us the next set of matrices: \(\begin{bmatrix} (-1)^n\sqrt{-bc} && b \\ c && -(-1)^n\sqrt{-bc} \end{bmatrix} \)

 

(where n is a natural number, couldnt find the plus minus sign). but as you can see, every matrice from the first set of matrices is also a member of the second set of matrices, therefore we can simply say that every matrice that is a member of the second set is a solution (keep in mind that every matrice from that set is a solution)

 

but we dont want A=0 as a solution, so we simply have to add that b*c is not 0.

 

solution: \(\begin{bmatrix} (-1)^n\sqrt{-bc} && b \\ c && -(-1)^n\sqrt{-bc} \end{bmatrix} \)

(where b*c is not 0)

Aug 17, 2017
 #1
avatar+26400 
+7

Two altitudes of a triangle have lengths 12 and 14. What is the longest possible length of the third altitude,

if it is a positive integer?

 

Let h = the length of the third altitude.

Let a, b, and c be the sides corresponding to the altitudes of length 12, 14, and h

 

Let A = Area of the triangle.

Let 2A = a*12
Let 2A = b*14
Let 2A = c*h

 

1.

\(\begin{array}{|rcll|} \hline a &=& \frac{2A}{12} \\ b &=& \frac{2A}{14} \\ c &=& \frac{2A}{h} \\ \hline \end{array}\)

 

2.

A triangle exists with side lengths a, b, and c
if and only if they satisfy the three triangle inequalities:

\(\begin{array}{|lrcll|} \hline (1) & a & < & b + c \\ (2) & b & < & c + a \\ (3) & c & < & a + b \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & \frac{2A}{12} & < & \frac{2A}{14} + \frac{2A}{h} \quad & | \quad :2A \\ & \frac{1}{12} & < & \frac{1}{14} + \frac{1}{h} \\\\ (2) & \frac{2A}{14} & < & \frac{2A}{h} + \frac{2A}{12} \quad & | \quad :2A \\ & \frac{1}{14} & < & \frac{1}{h} + \frac{1}{12} \\\\ (3) & \frac{2A}{h} & < & \frac{2A}{12} + \frac{2A}{14} \quad & | \quad :2A \\ & \frac{1}{h} & < & \frac{1}{12} + \frac{1}{14} \\ \hline \end{array}\)

 

(1):

\( \begin{array}{|rcll|} \hline \frac{1}{12} & < & \frac{1}{14} + \frac{1}{h} \\ \frac{1}{12}-\frac{1}{14} & < & \frac{1}{h} \\ \frac{12-14}{12\cdot 14} & < & \frac{1}{h} \\ \frac{2}{168} & < & \frac{1}{h} \\ \frac{1}{84} & < & \frac{1}{h} \quad & | \quad \cdot 84h \\ \mathbf{ h } & \mathbf{ < } & \mathbf{ 84 } \\ \hline \end{array} \)

 

(2):

\(\begin{array}{|rcll|} \hline \frac{1}{14} & < & \frac{1}{h} + \frac{1}{12} \\ \frac{1}{14} - \frac{1}{12} & < & \frac{1}{h} \\ \frac{12-14}{14\cdot 12} & < & \frac{1}{h} \\ -\frac{2}{168} & < & \frac{1}{h} \\ -\frac{1}{84} & < & \frac{1}{h} \quad & | \quad \cdot 84h \\ -h & < & 84 \quad & | \quad \cdot (-1) \qquad switch "<" to ">" \\ \mathbf{ h } & \mathbf{ > } & \mathbf{ -84 } \\ \hline \end{array} \)

 

(3):

\(\begin{array}{|rcll|} \hline \frac{1}{h} & < & \frac{1}{12} + \frac{1}{14} \\ \frac{1}{h} & < & \frac{14+12}{12\cdot 14} \\ \frac{1}{h} & < & \frac{26}{168} \\ \frac{1}{h} & < & \frac{13}{84} \quad & | \quad \cdot \frac{84}{13}\ h \\ \frac{84}{13} & < & h \\ \mathbf{ 6.46153846154 } & \mathbf{ < } & \mathbf{ h } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 6.46153846154 < h < 84 \\ \hline \end{array}\)

 

The longest possible length of the third altitude, if it is a positive integer is 83

 

laugh

Aug 17, 2017

0 Online Users