Questions   
Sort: 
 #3
avatar+118723 
0
Aug 23, 2017
 #3
avatar+26400 
0

Heureka, how did you get that ϕ^n=Fnϕ+Fn-1 ?

 

Formula:  \( \phi^2 = \phi +1\)

mathematical proof:

\(\begin{array}{|rcll|} \hline \phi = \frac{1+\sqrt{5}} {2} \\\\ \phi^2 &=& \left( \frac{1+\sqrt{5}} {2} \right)^2 \\ &=& \frac{\left( 1+\sqrt{5}\right)^2 } {4} \\ &=& \frac{ 1+2\sqrt{5}+5 } {4} \\ &=& \frac{ 6+2\sqrt{5} } {4} \\ &=& \frac{ 3+\sqrt{5} } {2} \\ &=& \frac{ 1+2+\sqrt{5} } {2} \\ &=& \frac{ 1+\sqrt{5}+2 } {2} \\ &=& \frac{ 1+\sqrt{5} } {2} +\frac{2}{2} \\ &=& \frac{ 1+\sqrt{5} } {2} + 1 \\ &=& \mathbf{ \phi + 1 } \\ \hline \end{array}\)

 

\(\small{ \begin{array}{|lclclclcl|} \hline \phi^1&&&& &=& 1\phi+0 &=& F_1\phi + F_0 \\ \phi^2&&&& &=& 1\phi+1 &=& F_2\phi + F_1 \\ \phi^3 = \phi\phi^2 = \phi(\phi+1) &=&1\phi^2 + 1\phi &=&1(\phi+1)+1\phi &=& 2\phi+1 &=& F_3\phi + F_2 \\ \phi^4 = \phi\phi^3 = \phi(2\phi+1) &=&2\phi^2 + 1\phi &=&2(\phi+1)+1\phi &=& 3\phi+2 &=& F_4\phi + F_3 \\ \phi^5 = \phi\phi^4 = \phi(3\phi+2) &=&3\phi^2 + 2\phi &=&3(\phi+1)+2\phi &=& 5\phi+3 &=& F_5\phi + F_4 \\ \phi^6 = \phi\phi^5 = \phi(5\phi+3) &=&5\phi^2 + 3\phi &=&5(\phi+1)+3\phi &=& 8\phi+5 &=& F_6\phi + F_5 \\ \phi^7 = \phi\phi^6 = \phi(8\phi+5) &=&8\phi^2 + 5\phi &=&8(\phi+1)+5\phi &=& 13\phi+8 &=& F_7\phi + F_6 \\ \phi^8 = \phi\phi^7 = \phi(13\phi+8) &=&13\phi^2 + 8\phi &=&13(\phi+1)+8\phi &=& 21\phi+13 &=& F_8\phi + F_7 \\ \phi^9 = \phi\phi^8 = \phi(21\phi+13) &=&21\phi^2 + 13\phi &=&21(\phi+1)+13\phi &=& 34\phi+21 &=& F_9\phi + F_8 \\ \phi^{10} = \phi\phi^9 = \phi(34\phi+21) &=&34\phi^2 + 21\phi &=&34(\phi+1)+21\phi &=& 55\phi+34 &=& F_{10}\phi + F_9 \\ \cdots \\ \mathbf{ \phi^n } &&&& && &\mathbf{ =}& \mathbf{ F_n\phi + F_{n-1}} \\ \hline \end{array} }\)

 

 

laugh

Aug 23, 2017
 #2
avatar+590 
0
Aug 23, 2017

0 Online Users