Questions   
Sort: 
 #3
avatar
0
Sep 20, 2017
 #2
avatar+4116 
+1
Sep 20, 2017
 #2
avatar+205 
+1
Sep 20, 2017
 #2
avatar+20 
0
Sep 20, 2017
 #3
avatar+26396 
+1

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

\(\begin{array}{rcll} && \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{199*201} \\ &=& \frac{1}{1*3} + \frac{1}{3*5} + \frac{1}{5*7}+ \frac{1}{7*9}+\ldots+\frac{1}{(2n-1)(2n+1)} \\ \hline && \frac{1}{(2n-1)(2n+1)} = \frac12\left( \frac{1}{2n-1} - \frac{1}{2n+1} \right) \\ && \frac{1}{1*3} = \frac12\left( \frac{1}{1} - \frac{1}{3} \right) \\ && \frac{1}{3*5} = \frac12\left( \frac{1}{3} - \frac{1}{5} \right) \\ && \frac{1}{5*7} = \frac12\left( \frac{1}{5} - \frac{1}{7} \right) \\ && \frac{1}{7*9} = \frac12\left( \frac{1}{7} - \frac{1}{9} \right) \\ && \ldots \\ && \frac{1}{199*201} = \frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ \hline &=& \frac12\left( \frac{1}{1} - \frac{1}{3} \right) + \frac12\left( \frac{1}{3} - \frac{1}{5} \right) + \frac12\left( \frac{1}{5} - \frac{1}{7} \right) + \frac12\left( \frac{1}{7} - \frac{1}{9} \right)+\ldots+\frac12\left( \frac{1}{199} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \underbrace{\frac{1}{3} + \frac{1}{3}}_{=0} - \underbrace{\frac{1}{5}+\frac{1}{5}}_{=0} - \underbrace{\frac{1}{7} + \frac{1}{7}}_{=0} - \underbrace{\frac{1}{9}+ \frac{1}{9}}_{=0} +\ldots- \underbrace{\frac{1}{199}+\frac{1}{199}}_{=0} - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{1}{1} - \frac{1}{201} \right) \\ &=& \frac12\left( 1 - \frac{1}{201} \right) \\ &=& \frac12\left( \frac{201-1}{201} \right) \\ &=& \frac12\left( \frac{200}{201} \right) \\ &=& \frac{100}{201} \\ \end{array} \)

 

laugh

Sep 20, 2017
 #2
avatar+26396 
+1

Compute 1*1/2+2*1/4+3*1/8+...+n*1/2n+...

 

\(\begin{array}{|rcll|} \hline S_n &=& 1*\frac{1}{2}+2*\frac{1}{4}+3*\frac{1}{8}+4*\frac{1}{16}+\ldots+n*\left(\frac{1}{2}\right)^n+\ldots \\ \hline \end{array} \)

 

(i)

\(\text{Multiply } S_n \text{ by } \tfrac12 \text{ the common ratio of the geometric series} \)

\(\small{ \begin{array}{rcccccccccccccl} S_n &=& 1*\frac{1}{2} &+& 2*\frac{1}{4} &+& 3*\frac{1}{8} &+& 4*\frac{1}{16} &+& \ldots &+& n*\left(\frac{1}{2}\right)^n && \\ \frac12 S_n &=& & & 1*\frac{1}{4} &+& 2*\frac{1}{8} &+& 3*\frac{1}{16} &+& \ldots &+& (n-1)*\left(\frac{1}{2}\right)^n &+& n*\left(\frac{1}{2}\right)^{n+1} \\ \hline (1-\frac12)S_n &=& [~ 1*\frac{1}{2} &+& 1*\frac{1}{4} &+& 1*\frac{1}{8} &+& 1*\frac{1}{16} &+& \ldots &+& 1*\left(\frac{1}{2}\right)^n ~] &-& n*\left(\frac{1}{2}\right)^{n+1} \quad (\text{subtract})\\ \end{array} } \)

 

The series in the square brackets is a geometric series with \(a = \frac12\), \(r = \frac12\) and \(n\) terms,
Thus, \(S_n\) for this series =\( \dfrac{a(1-r^{n})}{1-r} = \dfrac{\frac12(1-(\frac12)^n)}{1-\frac12}=1-(\frac12)^n\)

\(\begin{array}{rcll} (1-\frac12)S_n &=& [~ 1*\frac{1}{2} + 1*\frac{1}{4} + 1*\frac{1}{8} + 1*\frac{1}{16} + \ldots + 1*\left(\frac{1}{2}\right)^n ~] - n*\left(\frac{1}{2}\right)^{n+1} \\ (1-\frac12)S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ \frac12S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ \end{array} \)

 

(ii)

\(\text{Because } \left|\frac12\right| < 1 \text{, then } \lim \limits_{n\to \infty} { \left(\frac12 \right)^n } = 0 \text{ and } \lim \limits_{n\to \infty} { \left(\frac12 \right)^{n+1} } = 0\)

\(\begin{array}{rcll} \frac12S_n &=& 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \\ S_n &=& 2 \left( 1-(\frac12)^n - n*\left(\frac{1}{2}\right)^{n+1} \right) \\ \lim \limits_{n\to \infty} {S_n} &=& 2 \left( 1-0 - n*0 \right) \\ &=& 2\cdot( 1 ) \\ &=& 2 \\ \end{array}\)

 

laugh

Sep 20, 2017

1 Online Users

avatar