Processing math: 100%
 
  Questions   
Sort: 
 #3
avatar
0
Sep 20, 2017
 #2
avatar+4116 
+1
Sep 20, 2017
 #2
avatar+205 
+1
Sep 20, 2017
 #2
avatar+20 
0
Sep 20, 2017
 #1
avatar+26396 
+1

An infinite geometric series has first term -3/2 and sums to twice the common ratio.

Find the sum of all possible values for the common ratio.

 

If the common ratio r lies between −1 to 1 , we can have the sum of an infinite geometric series.

That is, the sum exits for |r|<1 .

The sum S of an infinite geometric series with \( -1 is given by the formula, S=a11r

 

Let a1=32

Let r=?

 

S=a11r=2r|a1=32321r=2r3211r=2r|:23411r=r341r1=r|(r1)34=r(r1)|34r(r1)34=0r2r34=0r=1±14(34)2r=1±1+32r=1±22r1=1+22r1=32| no common ratio, because r>1r2=122r2=12

 

the sum of all possible values for the common ratio is 12

 

laugh

Sep 20, 2017
 #3
avatar+26396 
+1

What is the value of the sum 1/1*3 + 1/3*5 + 1/5*7+ 1/7*9+...+1/199*201?

Express your answer as a fraction in simplest form.

 

113+135+157+179++1199201=113+135+157+179++1(2n1)(2n+1)1(2n1)(2n+1)=12(12n112n+1)113=12(1113)135=12(1315)157=12(1517)179=12(1719)1199201=12(11991201)=12(1113)+12(1315)+12(1517)+12(1719)++12(11991201)=12(1113+13=015+15=017+17=019+19=0+1199+1199=01201)=12(111201)=12(11201)=12(2011201)=12(200201)=100201

 

laugh

Sep 20, 2017
 #2
avatar+26396 
+1

Compute 1*1/2+2*1/4+3*1/8+...+n*1/2n+...

 

Sn=112+214+318+4116++n(12)n+

 

(i)

Multiply Sn by 12 the common ratio of the geometric series

Sn=112+214+318+4116++n(12)n12Sn=114+218+3116++(n1)(12)n+n(12)n+1(112)Sn=[ 112+114+118+1116++1(12)n ]n(12)n+1(subtract)

 

The series in the square brackets is a geometric series with a=12, r=12 and n terms,
Thus, Sn for this series =a(1rn)1r=12(1(12)n)112=1(12)n

(112)Sn=[ 112+114+118+1116++1(12)n ]n(12)n+1(112)Sn=1(12)nn(12)n+112Sn=1(12)nn(12)n+1

 

(ii)

Because |12|<1, then limn(12)n=0 and limn(12)n+1=0

12Sn=1(12)nn(12)n+1Sn=2(1(12)nn(12)n+1)limnSn=2(10n0)=2(1)=2

 

laugh

Sep 20, 2017

0 Online Users