I assume the question is:
A sequence of positive integers with a1=1 and a9+a10=646 is formed so that the first three terms are in geometric progression, the second, third, and fourth terms are in arithmetic progression, and, in general, for all n≥1, the terms a2n−1,a2n,a2n+1 are in geometric progression, and the terms a2n,a2n+1, and a2n+2 are in arithmetic progression. Let an be the greatest term in this sequence that is less than 1000. Find an.
Let AP = arithmetic progression,
Let GP = geometric progression
AP Formula: t= term i,j,k= indicesti(j−k)+tj(k−i)+tk(i−j)=0i=2nti=a2nj=2n+1tj=a2n+1k=2n+2tk=a2n+2
ti(j−k)+tj(k−i)+tk(i−j)=0a2n(2n+1−(2n+2))+a2n+1(2n+2−2n)+a2n+2(2n−(2n+1))=0−a2n+2a2n+1−a2n+2=0
GP Formula: t= term i,j,k= indicestj−ki×tk−ij×ti−jk=1i=2n−1ti=a2n−1j=2ntj=a2nk=2n+1tk=a2n+1
tj−ki×tk−ij×ti−jk=1a2n−(2n+1)2n−1×a2n+1−(2n−1)2n×a2n−1−(2n)2n+1=1a−12n−1×2a22n×a−12n+1=1
So we have:
(1)a2n+2=2a2n+1−a2n(2)a2n+1=a22na2n−1
a1=1a3=a22a1a1=1| Formula (2)a3=a22a4=2a3−a2a3=a22| Formula (1)=2a22−a2a4=a2(2a2−1)a5=a24a3| Formula (2)a5=a22(2a2−1)2a22a5=(2a2−1)2a6=2a5−a4| Formula (1)=2(2a2−1)2−a2(2a2−1)a6=(2a2−1)(3a2−2)a7=a26a5| Formula (2)a7=(2a2−1)2(3a2−2)2(2a2−1)2a7=(3a2−2)2a8=2a7−a6| Formula (1)=2(3a2−2)2−(2a2−1)(3a2−2)a8=(3a2−2)(4a2−3)a9=a28a7| Formula (2)a9=(3a2−2)2(4a2−3)2(3a2−2)2a9=(4a2−3)2a10=2a9−a8| Formula (1)=2(4a2−3)2−(3a2−2)(4a2−3)a10=(4a2−3)(5a2−4)
a9+a10=646a9+a10=646(4a2−3)2+(4a2−3)(5a2−4)=646(4a2−3)(4a2−3+5a2−4)=646(4a2−3)(9a2−7)=646…36a22−55a2−625=0a2=55±√552−4⋅36⋅(−625)2⋅36=55±√9302572=55±30572a2=55+30572a2=5ora2=55−30572a2=−3.47222222222no solution, because an is a sequenceof positive integers!
Let an be the greatest term in this sequence that is less than 1000. Find an
a1=1a2=5a3=52=25a4=5⋅9=45a5=92=81a6=9⋅13=117a7=132=169a8=13⋅17=221a9=172=289a10=17⋅21=357a11=212=441a12=21⋅25=525a13=252=625a14=25⋅29=725a15=292=841a16=29⋅33=957an<1000a17=332=1089an>1000
an is 957
GP:nratioa2n−1a2na2n+115152521.825458131.4…8111716941.3076923076916922128951.2352941176528935744161.1904761904844152562571.1662572584181.137931034488419571089……………
AP:ncommon differencea2na2n+1a2n+212052545236458111735211716922146822128935758435744152561005256257257116725841957……………
