Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar+130474 
+2

2.  SQUARE

 

a) Vowels are always together

 

Note that  the vowels can appear in any one of these positions  [ V = vowel ]

 

V V V _ _ _

_ V V V _ _

_ _ V V V _

_ _ _ V V V

 

There are 4 positions where the vowels can appear together.....and for each of these the vowels can be arranged in 3! ways  =  6 ways    and the other letters can be arranged in 3!  = 6 ways

 

So......the total possible "words" that can be made where the vowels appear together is

 

4 *  6 * 6    =   144 "words"  =  144 arangements

 

 

 

b) Vowels are never together 

 

The vowels can appear in these positions

 

V _ V _ V _

_ V _ V _ V

 

So there are 2 possibilities here.....and for each of these, the vowels can be arranged in 3! ways = 6 ways  and the other 3 letters can be arranged in 3! ways  = 6 ways

 

So.....the total possible arrangements where the vowels never appear together is  just :

 

2 * 6 * 6    =    72  arrangements

 

 

c)  UAE  never appear together

 

First  note that the total possible  arrangements is just  6!  = 720

 

Let's count the number of arrangements where UAE  do appear together

 

U A E _ _ _

_ U A E _ _

_ _ U A E _

_ _ _ U A E

 

There are 4 of these....and for each, the other letters can be arranged in 3!  = 6 ways

 

So....the total arrangements where UAE appear together  is just :

 

4 * 3!  =  4 * 6   =  24

 

So....the number of arrangements where UAE never appear together  is just

 

Total arrangements  - Arrangements where UAE appear together  

 

720  - 24   =  696 arrangements

 

 

cool cool cool

Feb 9, 2018
 #1
avatar+26396 
+2

I assume the question is:

A sequence of positive integers with a1=1 and a9+a10=646 is formed  so that the first three terms are in geometric progression,  the second, third, and fourth terms are in arithmetic progression,  and, in general, for all n1,  the terms a2n1,a2n,a2n+1 are in geometric progression,  and the terms a2n,a2n+1, and a2n+2 are in arithmetic progression.  Let an be the greatest term in this sequence that is less than 1000. Find an.

 

Let AP = arithmetic progression,

Let GP = geometric progression

 

AP Formula: t= term  i,j,k= indicesti(jk)+tj(ki)+tk(ij)=0i=2nti=a2nj=2n+1tj=a2n+1k=2n+2tk=a2n+2

ti(jk)+tj(ki)+tk(ij)=0a2n(2n+1(2n+2))+a2n+1(2n+22n)+a2n+2(2n(2n+1))=0a2n+2a2n+1a2n+2=0

 

GP Formula: t= term  i,j,k= indicestjki×tkij×tijk=1i=2n1ti=a2n1j=2ntj=a2nk=2n+1tk=a2n+1

 

tjki×tkij×tijk=1a2n(2n+1)2n1×a2n+1(2n1)2n×a2n1(2n)2n+1=1a12n1×2a22n×a12n+1=1

 

So we have:

(1)a2n+2=2a2n+1a2n(2)a2n+1=a22na2n1

 

a1=1a3=a22a1a1=1| Formula (2)a3=a22a4=2a3a2a3=a22| Formula (1)=2a22a2a4=a2(2a21)a5=a24a3| Formula (2)a5=a22(2a21)2a22a5=(2a21)2a6=2a5a4| Formula (1)=2(2a21)2a2(2a21)a6=(2a21)(3a22)a7=a26a5| Formula (2)a7=(2a21)2(3a22)2(2a21)2a7=(3a22)2a8=2a7a6| Formula (1)=2(3a22)2(2a21)(3a22)a8=(3a22)(4a23)a9=a28a7| Formula (2)a9=(3a22)2(4a23)2(3a22)2a9=(4a23)2a10=2a9a8| Formula (1)=2(4a23)2(3a22)(4a23)a10=(4a23)(5a24)

 

a9+a10=646a9+a10=646(4a23)2+(4a23)(5a24)=646(4a23)(4a23+5a24)=646(4a23)(9a27)=64636a2255a2625=0a2=55±552436(625)236=55±9302572=55±30572a2=55+30572a2=5ora2=5530572a2=3.47222222222no solution, because an is a sequenceof positive integers!

 

Let an be the greatest term in this sequence that is less than 1000. Find an

a1=1a2=5a3=52=25a4=59=45a5=92=81a6=913=117a7=132=169a8=1317=221a9=172=289a10=1721=357a11=212=441a12=2125=525a13=252=625a14=2529=725a15=292=841a16=2933=957an<1000a17=332=1089an>1000

 

 

an is 957

 

 

GP:nratioa2n1a2na2n+115152521.825458131.48111716941.3076923076916922128951.2352941176528935744161.1904761904844152562571.1662572584181.137931034488419571089

 

AP:ncommon differencea2na2n+1a2n+212052545236458111735211716922146822128935758435744152561005256257257116725841957

 

laugh

Feb 9, 2018

2 Online Users

avatar