Solve for x:
3 (sqrt(x) - 4) (sqrt(2) sqrt(x) - 2) = -sqrt(2) (sqrt(2) - sqrt(x)) (2 sqrt(x) + 1)
Add sqrt(2) (2 sqrt(x) + 1) (sqrt(2) - sqrt(x)) to both sides:
sqrt(2) (sqrt(2) - sqrt(x)) (2 sqrt(x) + 1) + 3 (sqrt(x) - 4) (sqrt(2) sqrt(x) - 2) = 0
sqrt(2) (sqrt(2) - sqrt(x)) (2 sqrt(x) + 1) + 3 (sqrt(x) - 4) (sqrt(2) sqrt(x) - 2) = 26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x:
26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x = 0
Simplify and substitute y = sqrt(x).
26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x = 26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) (sqrt(x))^2
= sqrt(2) y^2 + (-2 - 13 sqrt(2)) y + 26:
sqrt(2) y^2 + (-2 - 13 sqrt(2)) y + 26 = 0
The left hand side factors into a product with two terms:
(y - 13) (sqrt(2) y - 2) = 0
Split into two equations:
y - 13 = 0 or sqrt(2) y - 2 = 0
Add 13 to both sides:
y = 13 or sqrt(2) y - 2 = 0
Substitute back for y = sqrt(x):
sqrt(x) = 13 or sqrt(2) y - 2 = 0
Raise both sides to the power of two:
x = 169 or sqrt(2) y - 2 = 0
Add 2 to both sides:
x = 169 or sqrt(2) y = 2
Divide both sides by sqrt(2):
x = 169 or y = sqrt(2)
Substitute back for y = sqrt(x):
x = 169 or sqrt(x) = sqrt(2)
Raise both sides to the power of two:
x = 169 x = 2 is extraneous