Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #6
avatar+104 
+2
Apr 17, 2019
 #1
avatar+26396 
+2

Let the roots of

z3=2+2i

be a1+ib1a2+ib2 and a3+ib3.
Compute a1a2a3.

 

z3=2+2i, z3=a+ibconvert 2+2i to polar form:r=a2+b2=22+22=8=233r=323=3232=(232)13=212=2θ=arctan(ba)=arctan(22)=π4θi=π4+2πk3θi=π12+23πk,k=0, 1,2θ1=112π,θ2=34π,θ3=1712π

 

z0=2(cos(112π)+isin(112π))|cos(112π)=2(3+1)4z1=2(cos(34π)+isin(34π))|cos(34π)=22z2=2(cos(1712π)+isin(1712π))|cos(1712π)=2(31)4

 

a1a2a3=22(3+1)42(22)2(2(31)4)=14(3+1)(31)=314=24=12

 

laugh

Apr 17, 2019

2 Online Users

avatar