Questions   
Sort: 
 #2
avatar+26367 
+2

2)
Let \(a,b,c\) be positive real numbers such that \(\log_a b + \log_b c + \log_c a = 0\).
Find \((\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3\).

 

\(\text{Let $\log_a b = \mathbf{x} $} \\ \text{Let $\log_b c = \mathbf{y} $} \\ \text{Let $\log_c a = \mathbf{z} $} \)

 

\(\begin{array}{|rcll|} \hline \log_a b + \log_b c + \log_c a &=& 0 \\ \mathbf{x+y+z} &=& \mathbf{0} \qquad (1) \\ \hline \end{array}\)

 

\(\begin{array}{|rclrcl|} \hline \log_a b &=&\dfrac{\log_c b}{\log_c a} \quad&| \quad \log_c b &=&\dfrac{\log_b b}{\log_b c} \\\\ \log_a b &=&\dfrac{\log_b b}{\log_b c\log_c a} \quad&| \quad \log_b b = 1 \\\\ \log_a b &=&\dfrac{1}{\log_b c\log_c a} \\\\ \log_a b\log_b c\log_c a &=& 1 \\\\ \mathbf{xyz} &=& \mathbf{1} \qquad (2) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (x+y+z)^3 &=& (x+y+z)^2(x+y+z) \\ &=& \left(x^2+y^2+z^2+2(xy+yz+xz)\right)(x+y+z) \\ &=& (x^2+y^2+z^2)(x+y+z)+ 2(x+y+z)(xy+yz+xz) \\\\ &=& x^3+y^3+z^3 \\ && +x^2y+x^2z+y^2x+y^2z+z^2x+z^2y + 2(x+y+z)(xy+yz+xz) \\\\ &=& x^3+y^3+z^3 \\ && +(x+y+z)(xy+yz+xz) -3xyz + 2(x+y+z)(xy+yz+xz) \\\\ (x+y+z)^3&=& x^3+y^3+z^3 -3xyz + 3(x+y+z)(xy+yz+xz) \\ \hline \mathbf{x^3+y^3+z^3} &=& \mathbf{(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz} \qquad (3) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{x^3+y^3+z^3} &=& \mathbf{(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz} \\ && \boxed{x+y+z = 0} \\ x^3+y^3+z^3 &=& 0^3-3\cdot 0\cdot (xy+yz+xz)+3xyz \\ x^3+y^3+z^3 &=& 3xyz \\ && \boxed{xyz = 1} \\ x^3+y^3+z^3 &=& 3\cdot 1 \\ x^3+y^3+z^3 &=& 3 \\ \mathbf{(\log_a b)^3 + (\log_b c)^3 + (\log_c a)^3} &=& \mathbf{3} \\ \hline \end{array}\)

 

laugh

Jun 28, 2019
 #2
avatar+10 
+1
Jun 28, 2019

1 Online Users