Questions   
Sort: 
 #1
avatar+130511 
+10

I'm wondering if the phrasing of this question should be "at least two."

Consider the following pentagon in which the vertices represent 5 people at a gathering........call them A,B, C,D, E.

Now, suppose that all the people there are total strangers to one another. Then, it's clear that there are more than two people who have the same number of friends at the gathering. In fact, there are 5 people who have the same number of friends.......namely ......none!!!

But, if the phrase includes"at least two," then it's true. Suppose we have some polygon with a "large number" of alphabetical vertices - call the number "n" -, and let each vertex represent a "person."  Now, connect every vertex with every other vertex and let these connections represent the associations between people. In this instance everyone knows the same number of people - (n-1). Now, erase any one of the connected lines. Then, the two vertexes (people) that were connected by this line now know the same number of people (n-2). And if we continued in this fashion of erasing lines, there would always be at least two vertices that had the same valence (valence is the number of lines meeting at one vertex). And thus, there would always be at least two people who knew the same number of people!! For instance, suppose we erased AB  and AC. Then B and C would know the same number of people - in this case, everybody else except "A." Or, if we erased AB, BC and AC, then A, B, and C would know the same number of people - (n-3).

I realize that this isn't a "formal" proof, but I think it demonstrates the idea. Perhaps someone on the site could give a more "formal" one??? I'm sure there's a simpler way, I just don't happen to know it....!!!

 

Aug 24, 2014
 #8
avatar
+5

OK! Here is my proof!

Lemma: $${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = -{\mathtt{1}}$$

Statement                                          Reason

1.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = {\mathtt{x}}$$                                   Given

2.$${{\mathtt{e}}}^{\left({\mathtt{k}}{\mathtt{\,\times\,}}{i}\right)} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{k}}\right)}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{k}}\right)}$$              Euler's Identity

3.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{cos}}{\left({\mathtt{\pi}}\right)}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{\pi}}\right)}$$            From 1. and 2.

4.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = {\mathtt{\,-\,}}{\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{i}{\mathtt{\,\times\,}}{\mathtt{0}}$$                 Simplify

5.$${{\mathtt{e}}}^{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right)} = -{\mathtt{1}}$$                                Simplify

Q.E.D.

Main Proof:

Statement                                                   Reason

1.$${{i}}^{{i}} = {\mathtt{x}}$$                                                    Given

2. $${ln}{\left({{i}}^{{i}}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                                    Take log of both sides

3.$${i}{\mathtt{\,\times\,}}{ln}{\left({i}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                                 Power rule of logarithms

4. $${i} = {\sqrt{-{\mathtt{1}}}}$$                                             Given

5.$${i} = {\left(-{\mathtt{1}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}$$                                         Algebra

6.$${i}{\mathtt{\,\times\,}}{ln}{\left({\left(-{\mathtt{1}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                      From 5. and 3.

7. $${i}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}{ln}{\left(-{\mathtt{1}}\right)} = {ln}{\left({\mathtt{x}}\right)}$$                Power rule of logarithms

8. $${ln}{\left({\mathtt{x}}\right)} = {\mathtt{y}}$$ if and only if $${{\mathtt{e}}}^{{\mathtt{y}}} = {\mathtt{x}}$$              Definition of ln

9.$${i}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}\right) = {ln}{\left({\mathtt{x}}\right)}$$                 Use the lemma

10. $$\left({\frac{\left({\mathtt{\pi}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                            Algebra

11. $$\left({\frac{\left(\left(-{\mathtt{1}}\right){\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                           Algebra

12. $$\left({\frac{-{\mathtt{\pi}}}{{\mathtt{2}}}}\right) = {ln}{\left({\mathtt{x}}\right)}$$                                      Algebra

13. $${{\mathtt{e}}}^{\left({\frac{-{\mathtt{\pi}}}{{\mathtt{2}}}}\right)} = {\mathtt{x}}$$                                          Take antilog of both sides and use step 8.

14.$${\frac{{\mathtt{1}}}{\left({{\mathtt{e}}}^{\left({\frac{{\mathtt{\pi}}}{{\mathtt{2}}}}\right)}\right)}} = {\mathtt{x}}$$                                          Algebra

15. $${\frac{{\mathtt{1}}}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{\pi}}}\right)}} = {\mathtt{x}}$$                                            Algebra

16. $$\left({\frac{{\mathtt{1}}}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{\pi}}}\right)}}\right){\mathtt{\,\times\,}}\left({\frac{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}}\right) = {\mathtt{x}}$$              Rationalize the denominator

17. $${\frac{\left({{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}\right)}{\left({{\sqrt{{\mathtt{e}}}}}^{\,{\mathtt{4}}}\right)}}$$                                             Algebra

18. $${\frac{{{\sqrt{{\mathtt{e}}}}}^{\,\left({\mathtt{4}}-{\mathtt{\pi}}\right)}}{{{\mathtt{e}}}^{{\mathtt{2}}}}} = {\mathtt{0.207\: \!879\: \!576\: \!350\: \!761\: \!9}}$$   Algebra

And this is a real number.

Q.E.D.

Thanks to you all for submitting your proofs and also, please respond to tell me of any flaws in my proof. I will try to get back to WebCalc 2.0 with another puzzle proof question soon!

Aug 24, 2014
Aug 23, 2014

2 Online Users

avatar
avatar