First, simplify the terms in the numerator of the fraction.
\(\frac{5}{\sqrt{80}} = \frac{5\sqrt{80}}{80} = \frac{5\cdot4\sqrt{5}}{80}=\frac{\sqrt{5}}{4}\)
\(\frac{\sqrt{845}}{9} = \frac{13\sqrt{5}}{9}\)
\(\sqrt{45} = 3\sqrt{5}\)
The numerator then becomes
\(\frac{\sqrt{5}}{4} + \frac{13\sqrt{5}}{9} + 3\sqrt{5}\)
Since the denominator contains \(\sqrt{5}\), we can just divide that from the numerator:
\(\frac{1}{4} + \frac{13}{9} + 3 = \frac{169}{36}\)
Now, just take the square root of that to get the final answer:
\(\sqrt{\frac{169}{36}} = \frac{\sqrt{169}}{\sqrt{36}} = \boxed{\frac{13}{6}}\)
.