Questions   
Sort: 
 #1
avatar+33661 
+5
Dec 8, 2014
 #2
avatar+3 
0
Dec 8, 2014
 #1
avatar
+5

To answer this, you will need to use the pythagorean therom, a2+b2=c2.  a and b being the two side lengths, c will be your diagonal.

If a=2.1 and b=.8, the equation will be:

$${{\mathtt{2.1}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{0.8}}}^{{\mathtt{2}}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

Then you square 2.1 and 0.8

$${{\mathtt{2.1}}}^{{\mathtt{2}}} = {\frac{{\mathtt{441}}}{{\mathtt{100}}}} = {\mathtt{4.41}}$$

$${{\mathtt{0.8}}}^{{\mathtt{2}}} = {\frac{{\mathtt{16}}}{{\mathtt{25}}}} = {\mathtt{0.64}}$$

These values substituted into the equation give you:

$${\mathtt{4.41}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.64}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

When you add together 4.41 and 0.64, you get:

$${\mathtt{4.41}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.64}} = {\frac{{\mathtt{101}}}{{\mathtt{20}}}} = {\mathtt{5.05}}$$

You can then substitue this value into the equation giving you:

$${\mathtt{5.05}} = {{\mathtt{c}}}^{{\mathtt{2}}}$$

To get the c alone, you can take the square root of both sides, so:

$${{\mathtt{5.05}}}^{{\mathtt{0.5}}} = {\mathtt{2.247\: \!220\: \!505\: \!424\: \!423\: \!2}}$$(x^.5 is the same as taking the sqaure root of x)

The Sqaure root of c2 will be c, as the power of 2 will be cancled out by the square root.

So the final result will be 

$${\mathtt{c}} = {\mathtt{2.247\: \!220\: \!505\: \!424\: \!423\: \!2}}$$

So back to your original question.  In context, c is the diagonal of your rectangle.  So when you take the value for c, rounded to the nearest tenth (one decimal place), your answer would be...

$${\mathtt{diagonal}} = {\mathtt{2.2}}$$

.
Dec 8, 2014
 #4
avatar+118723 
+10

Some careless errors have been fixed - Thanks very much Alan.

It is correct now.

I have been perfecting my trademark here.

 If there is a R E A L L Y  L O N G  W A Y to do something I WILL FIND IT.

In my opinion CPhill's answer is the best one here.

It is really elegant.    Thanks Chris.

Heureka's answer is also much better than mine.    Thanks Heureka   

 

 

$$\int \left(\frac{x}{\sqrt{3-4x^2}}\right)dx\\\\
=\int \left(\frac{x}{\sqrt{4*(\frac{3}{4}-x^2)}}\right)dx\\\\
=\int \frac{x}{2\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\
=\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{3}{4}-x^2)}}\;dx\\\\
=\frac{1}{2}\;\int \frac{x}{\sqrt{(\frac{\sqrt{3}}{2})^2-x^2}}\;dx\\\\$$

 

$$\\=\frac{1}{2}\;\int \frac{x}{\sqrt{a^2-x^2}}\;dx\qquad where \quad a=\frac{\sqrt3}{2}\\\\
=\frac{1}{2}\;\int\;vu' \;dx\qquad where \quad v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\$$

 

 Now use integration by parts to solve.

 

 

$$\\v=x\;\;and\;\;u'=\frac{1}{\sqrt{a^2-x^2}}\\\\
v'=1\qquad u=sin^{-1}\;\frac{x}{a}\\\\
\;\int\; x*\frac{1}{\sqrt{a^2-x^2}}\;dx\\\\$$

 

$$\\=\frac{1}{2}(sin^{-1}\;\frac{x}{a}\;*\;x\;\;-\;\;\int\;sin^{-1}\;\frac{x}{a}\;*\;1\;dx)\\\\
=\frac{1}{2}\left(xsin^{-1}\;\frac{x}{a}\;\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;+\;xsin^{-1}\;\frac{x}{a}\;\;\right]\right)+c\\\\
=\frac{1}{2}\left(\;-\left[a\sqrt{1-\frac{x^2}{a^2}}\;\right]\right)+c\\\\
=\frac{-1}{2}\left(a\;\sqrt{1-\frac{x^2}{a^2}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{1-\frac{4x^2}{3}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{\sqrt{3}}{2}\;\sqrt{\frac{3-4x^2}{3}}\;\right)+c\\\\
=\frac{-1}{2}\left(\frac{1}{2}\;\sqrt{3-4x^2}\;\right)+c\\\\
=\;\frac{-\sqrt{3-4x^2}}{4}\;+c\\\\$$

.
Dec 8, 2014

2 Online Users