Questions   
Sort: 
 #57
avatar+118725 
+3

Another of Heureka's masterpeices.   (26/1/15)

 

 

 

$$\left[\ 1+\frac{1}{3}+\frac{2}{3}+\frac{2}{9}+\frac{4}{9}+\frac{4}{27}+\frac{8}{27} +\frac{8}{81} +\frac{16}{81}+\dots \ \right] \\\\ \\= 1+ \frac{1}{3} + \frac{2}{3} + \underbrace{\frac{1}{3}*\frac{2}{3} }_{=\frac{2}{9}}+ \underbrace{\frac{2}{3}*\frac{2}{3} }_{=\frac{4}{9}}+ \underbrace{\frac{1}{3}*\frac{4}{3^2} }_{=\frac{4}{27}}+ \underbrace{\frac{2}{3}*\frac{4}{3^2} }_{=\frac{8}{27}}+ \underbrace{ \frac{1}{3}* \frac{8}{3^3}}_{=\frac{8}{81}}+ \underbrace{\frac{2}{3}*\frac{8}{3^3}}_{=\frac{16}{81}}+\dots \ \\\\\\= 1+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2}{3}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{4}{3^2}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{8}{3^3}}+\dots \ \\\\\\= 1+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2}{3}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2^2}{3^2}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2^3}{3^3}}+\dots \ \\\\\\= 1+ 1+ \frac{2}{3}}+ \frac{2^2}{3^2}}+ \frac{2^3}{3^3}}+\dots \ \\\\\\s=1+1*( \frac{2}{3} ) ^0+1*(\frac{2}{3})^1+1*(\frac{2}{3})^2+1*(\frac{2}{3})^3+1*(\frac{2}{3})^4+\dots \$$

 

 

 

\left[\ 1+\frac{1}{3}+\frac{2}{3}+\frac{2}{9}+\frac{4}{9}+\frac{4}{27}+\frac{8}{27} +\frac{8}{81} +\frac{16}{81}+\dots \ \right] \\\\\\

= 1+ \frac{1}{3} + \frac{2}{3} + \underbrace{\frac{1}{3}*\frac{2}{3} }_{=\frac{2}{9}}+ \underbrace{\frac{2}{3}*\frac{2}{3} }_{=\frac{4}{9}}+ \underbrace{\frac{1}{3}*\frac{4}{3^2} }_{=\frac{4}{27}}+ \underbrace{\frac{2}{3}*\frac{4}{3^2} }_{=\frac{8}{27}}+ \underbrace{ \frac{1}{3}* \frac{8}{3^3}}_{=\frac{8}{81}}+ \underbrace{\frac{2}{3}*\frac{8}{3^3}}_{=\frac{16}{81}}+\dots \ \\\\\\

= 1+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2}{3}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{4}{3^2}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{8}{3^3}}+\dots \ \\\\\\

= 1+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2}{3}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2^2}{3^2}}+ ( \underbrace{\frac{1}{3} + \frac{2}{3} }_{=1} )*\frac{2^3}{3^3}}+\dots \ \\\\\\

= 1+ 1+ \frac{2}{3}}+ \frac{2^2}{3^2}}+ \frac{2^3}{3^3}}+\dots \ \\\\\\s=1+1*( \frac{2}{3} ) ^0+1*(\frac{2}{3})^1+1*(\frac{2}{3})^2+1*(\frac{2}{3})^3+1*(\frac{2}{3})^4+\dots \

Jan 26, 2015
 #8
avatar+118725 
+1
Jan 26, 2015

0 Online Users