10,8,6, AP a=10 d=-2 Tn=a+(n-1)d
$$T_{n+1}=a+nd=10-2n$$ (I have changed n to start at 0)
9,6,4,...... GP a=9 r=2/3 Tn=ar^(n-1)
$$\\T_{n+1} = ar^n\\\\
T_{n+1}=9*(\frac{2}{3})^n$$
Sum of Gamma's Sequence
$$\\S_\infty =\displaystyle\sum_0^\infty\quad (10-2n)*9*\frac{2^n}{3^n}\\\\
S_\infty =\displaystyle\sum_0^\infty\quad 90*\frac{2^n}{3^n}\quad-\quad\displaystyle\sum_0^\infty\quad (18n)*\frac{2^n}{3^n}\\\\
S_\infty =90*\displaystyle\sum_0^\infty\quad \frac{2^n}{3^n}\quad-\quad18\displaystyle\sum_0^\infty\quad \frac{n*2^n}{3^n}\\\\$$
$$\\NOW\\\\
\displaystyle\sum_0^\infty\;\;\frac{2^n}{3^n}
=\displaystyle\sum_0^\infty\;\;\left(\frac{2}{3}\right)^n\\\\
\qquad $ This is a GP a=1 r=2/3$\\\\
=\frac{a}{1-r}=\frac{1}{1-\frac{2}{3}}=\frac{1}{\frac{1}{3}}=3$$
$$\\S_\infty =90*\displaystyle\sum_0^\infty\quad \frac{2^n}{3^n}\quad-\quad18\displaystyle\sum_0^\infty\quad \frac{n*2^n}{3^n}\\\\
S_\infty =90*3\;\;-\quad18\displaystyle\sum_0^\infty\quad \frac{n*2^n}{3^n}\\\\
S_\infty =270\;\;-\quad18\displaystyle\sum_0^\infty\quad \frac{n*2^n}{3^n}\\\\$$
Here I cheated a little and used Wolfram|Alpha to solve the second sum. The answer is 6
The hyperlink is below ![]()
Wolfram|Alpha Second sum solution
$$\\S_\infty =270\;\;-\quad18\displaystyle\sum_0^\infty\quad \frac{n*2^n}{3^n}\\\\
S_\infty =270-18*6\\\\
S_\infty = 270-108\\\\
S_\infty = 162\\\\$$