Questions   
Sort: 
 #1
avatar+26404 
+5

Let 

f(x) = \frac{x^2}{x^2 - 1}.

Find the largest n so that

$$$ f(2)\cdot f(3)\cdot f(4)\cdots f(n-1)\cdot f(n) < 1.98. $$$

$$\boxed{ \small{\text{ $ \prod \limits_{i=2}^{n} \frac{i^2}{i^2-1} < 1.98 $ }} } \qquad \dfrac{i^2}{i^2-1} = \left(\dfrac{i}{i-1} \right) * \left(\dfrac{i}{i+1} \right)
$\\ \\ \\$
\small{\text{
$ \prod \limits_{i=2}^{n} \dfrac{i^2}{i^2-1} =
\prod\limits_{i=2}^{n} \left(\dfrac{i}{i-1} \right) * \left(\dfrac{i}{i+1} \right) = \prod\limits_{i=2}^{n} \left(\dfrac{i}{i-1} \right) * \prod\limits_{i=2}^{n} \left(\dfrac{i}{i+1} \right)
$
}} $\\\\$
\small{\text{
$ =
\left( \frac{2}{2-1} \cdot
\frac{3}{3-1} \cdot \frac{4}{4-1} \cdot \frac{5}{5-1} \dots \frac{n}{n-1}
\right)
\cdot
\left( \frac{2}{2+1} \cdot
\frac{3}{3+1} \cdot \frac{4}{4+1} \cdot \frac{5}{5+1} \dots \frac{n-1}{n} \cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left( \frac{2}{1} \cdot
\frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4} \dots \frac{n}{n-1}
\right)
\cdot
\left( \frac{2}{3} \cdot
\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \dots \frac{n-1}{n} \cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left(
\frac{2}{1} \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{3}} }{ \textcolor[rgb]{0,0,1}{\not{2}} } \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{4}} }{ \textcolor[rgb]{0,0,1}{\not{3}} } \cdot
\frac{\textcolor[rgb]{1,0,0}{\not{5}} }{ \textcolor[rgb]{0,0,1}{\not{4}} } \dots
\frac{\textcolor[rgb]{1,0,0}{\not{n}} }{ \textcolor[rgb]{0,0,1}{\not{n-1}} } \right)
\cdot
\left(
\frac{ \textcolor[rgb]{0,0,1}{\not{2}} }{\textcolor[rgb]{1,0,0}{\not{3}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{3}} }{\textcolor[rgb]{1,0,0}{\not{4}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{4}} }{\textcolor[rgb]{1,0,0}{\not{5}}} \cdot
\frac{ \textcolor[rgb]{0,0,1}{\not{5}} }{\textcolor[rgb]{1,0,0}{\not{6}}} \dots
\frac{ \textcolor[rgb]{0,0,1}{\not{n-1}} }{\textcolor[rgb]{1,0,0}{\not{n}} }
\cdot \frac{n}{n+1}
\right)
$
}} $\\\\$
\small{\text{
$ =
\left(
\frac{2}{1} \right)
\cdot
\left(
\frac{n}{n+1}
\right)
$
}} $\\\\$
\boxed{
\small{\text{
$
\left(
\frac{2}{1} \right)
\cdot
\left(
\frac{n}{n+1}
\right) < 1.98
$
}}
} \\\\
\small{\text{$ \dfrac{n}{n+1} < \dfrac{1.98}{2} $ }$ \\\\$
\small{\text{ $ \dfrac{n}{n+1} < 0.99 $ } $\\\\$
\small{\text{ $ n < 0.99 *(n+1) $ }} $\\$
\small{\text{ $ n < 0.99 *n+ 0.99 $ }} $\\$
\small{\text{ $ n - 0.99 *n < 0.99 $ }} $\\$
\small{\text{ $ n *(1 - 0.99) < 0.99 $ }} $\\$$$

$$\\
\small{\text{ $ n * 0.01 < 0.99 $ }} $\\$
\small{\text{ $ n < \frac{ 0.99 } { 0.01 } $ }} $\\$
\small{\text{ $ n < 99 $ }} \\
\boxed{ \small{\text{ $ n = 98 $ }} }$$

.
Jan 26, 2015
 #411
avatar+118725 
+5

@@ End of Day Wrap    Mon 26 /1/15     Sydney, Australia      Time 9:25 pm

 

 

How did you guess  -   It was a Public Holiday in Australia today.     

Australia Day marks the anniversary of the 1788 arrival of the First Fleet in Sydney Cove.

(Well the first boat anyway)  

 

Now down to business.

 

There were a lot of questions and some very busy  answerers today.  Thank you Heureka, Sasini, CPhill, MsTeya, Saseflower, Newbie, Alan, SevenUP, and I think I just saw a pop-up for Nauseated.  

And the cheer goes out.   

Now for the interest Posts

 

1) A challenging surd simplification.    Thanks Melody and Heureka   (Heureka's answer is better)

2) Difficult Trig Proof         Melody

3) Sum of a GP        CPhill's suggestion.   My answer.            

4) Chess board number Puzzle       Thanks Chris

5) Difficult Sum of an Infinite Series     Melody

6) What is a hyperbolic Tangent?       Thanks for the link anon.

7) Another GP question with a twist.        Melody

8) Planet velocities      Thanks   SevenUP

9) A touch more of physics    Thanks Alan

10) There are many ways to compute a sum      Heureka, Melody and CPhill  

 

And now it is time to relax - Australian style.  LOL

 

 

                             ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jan 26, 2015
 #225
avatar+118725 
0

Tues 27/1/15

1) Chris's retort was great - I had not heard this saying before.  Thanks Chris

2) Yesterday was also Republic Day for India!    Thanks for that info Rosala.     

3) Finding the point on a line that is closest to a given circle   Recommended by Chris  

Thanks Chris and Alan 

4) What is the difference between tan and inverse tan?   Thanks Chris

5) This difficult series question was included yesterday but interest in it has not waned.   

Thanks Melody, Heureka, Alan and Chris       

6) This series question looks both interesting and difficult.   Thanks Heureka

7) A touch of probablility     Thanks Alan and Melody

8) Midpoint of a chord created when circle and line intersect.      Melody

9) Limits    Thanks Chris and Heureka

                  ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jan 26, 2015
 #3
avatar+26404 
+10

Alpha writes the infinite arithmetic sequence10, 8, 6, 4, 2, 0 ,\ldots.

Beta writes the infinite geometric sequence9, 6, 4, \frac{8}{3}, \frac{16}{9}, \ldots.

Gamma makes a sequence whose n^{\text{th}} term is the product of the n^{\text{th}} term of Alpha's sequence and the n^{\text{th}} term of Beta's sequence:10\cdot 9 \quad,\quad 8\cdot 6\quad ,\quad 6\cdot 4\quad,\quad 4\cdot \frac83\quad,\quad 2\cdot \frac{16}{9}\quad,\quad \ldo...

What is the sum of Gamma's entire sequence ?

 

$$\\\small{\text{
Sequence alpha:
$ a_n = a_1 + (n-1)*d = (a_1-d) + n*d
\quad a_1=10$ and $d=8-10=a_{n+1}-a_n=-2$
}}\\
\small{\text{
Sequence beta:
$ b_n = b_1 *r^{n-1} \quad b_1=9$ and $r=\frac{6}{9}=\frac{b_{n+1}}{b_n}=\frac{2}{3}$
}}$\\\\$
\small{\text{
Sequence gamma :
$ g_n = a_n*b_n = b_1 *r^{n-1} [(a_1-d) + n*d]
$
}}\\
\small{\text{
$ \boxed{ g_n = \underbrace{ \left[ b_1(a_1-d) \right] *r^{n-1} }_{sum\ = \dfrac{b_1(a_1-d)}{1-r} } \ +\ b_1d* n r^{n-1} }
$ The sequence of Gamma has two parts.
}}$\\\\$
\small{\text{
The sum of the first part $ \left[ b_1(a_1-d) \right] *r^{n-1} $ is the sum of a geometric sequence $
= \frac{ b_1(a_1-d)}{1-r}
$
}}$\\\\$
\small{\text{
The sum s of the second part $ b_1d* n r^{n-1} $ is:
}} \\
\begin{array}{rcrrrrr}
s & = & (b_1d) * 1 * r^0 +&
(b_1d)* 2 * r^1 \ + &(b_1d) * 3 * r^2 \ +&(b_1d) * 4 * r^3 \ + &(b_1d) * 5 * r^4 \ + \dots \\
r*s & = & & (b_1d)* 1 * r^1 \ + &(b_1d) * 2 * r^2 \ +&(b_1d) * 3 * r^3 \ + &(b_1d) * 4 * r^4 \ + \dots \\
\hline
s-r*s & = & (b_1*d) \ + & (b_1d)*r^1 \ + &(b_1d)*r^2 \ +&(b_1d)*r^3 \ +&(b_1d)*r^4 \ + \dots \\
\end{array}\\
\small{\text{
$
s-r*s = \underbrace{ (b_1*d) \ + (b_1d)*r^1 \ + (b_1d)*r^2 \ +(b_1d)*r^3 \ +(b_1d)*r^4 \ + \dots }_{\text{sum of a geometric sequence }\ = \frac{b_1d}{1-r} }
$
} $\\$
\small{\text{
$
s-r*s = \frac{b_1d}{1-r}
$
}}$\\$
\small{\text{
$
s(1-r) = \frac{b_1d}{1-r}
$
}}$\\\\$
\small{\text{
$
s = \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
The sum of Gamma's sequence
$ = \dfrac{b_1(a_1-d)}{1-r} \ + \dfrac{b_1d}{(1-r)^2}
$
}}$\\\\$
\small{\text{
$ = \left( \dfrac{b_1}{1-r} \right) * \left[ (a_1-d)+\dfrac{d}{(1-r)} \right]
$
}}$$

$$\small{\text{
The sum of Gamma's sequence
$ = \left(
\dfrac{ 9 }{ 1 - \frac{2}{3} }
\right) *
\left[ (10-(-2))+ \dfrac{ (-2) } { 1 - \frac{2}{3} }
\right] $
}}\\
\small{\text{
$ = 9*3 *(12-2*3) = 27*6 = 162
$
}}$$

.
Jan 26, 2015

3 Online Users

avatar