Find the following limit:
lim_(x->∞) ((x + 2)/(x - 2))^(x + 1)
lim_(x->∞) ((x + 2)/(x - 2))^(x + 1) = lim_(x->∞) exp(log(((x + 2)/(x - 2))^(x + 1))) = lim_(x->∞) exp((x + 1) log((x + 2)/(x - 2))):
lim_(x->∞) exp(log((x + 2)/(x - 2)) (x + 1))
lim_(x->∞) exp((x + 1) log((x + 2)/(x - 2))) = exp(lim_(x->∞) (x + 1) log((x + 2)/(x - 2))):
exp(lim_(x->∞) log((x + 2)/(x - 2)) (x + 1))
lim_(x->∞) (x + 1) log((x + 2)/(x - 2)) = lim_(x->∞) x log((x + 2)/(x - 2)) (x + 1)/x:
exp(lim_(x->∞) x log((x + 2)/(x - 2)) (x + 1)/x)
By the product rule, lim_(x->∞) x (x + 1)/x log((x + 2)/(x - 2)) = (lim_(x->∞) (x + 1)/x) (lim_(x->∞) x log((x + 2)/(x - 2))):
exp(lim_(x->∞) x log((x + 2)/(x - 2)) lim_(x->∞) (x + 1)/x)
The leading term in the denominator of (x + 1)/x is x. Divide the numerator and denominator by this:
exp(lim_(x->∞) x log((x + 2)/(x - 2)) lim_(x->∞) (1 + 1/x)/1)
The expression 1/x tends to zero as x approaches ∞:
exp(lim_(x->∞) x log((x + 2)/(x - 2)))
To prepare the product x log((x + 2)/(x - 2)) for solution by l'Hôpital's rule, write it as (log((x + 2)/(x - 2)))/(1/x):
exp(lim_(x->∞) (log((x + 2)/(x - 2)))/(1/x))
Applying l'Hôpital's rule, we get that
lim_(x->∞) (log((x + 2)/(x - 2)))/(1/x) | = | lim_(x->∞) ( d/( dx) log((x + 2)/(x - 2)))/( d/( dx)(1/x))
| = | lim_(x->∞) (((x - 2) (1/(x - 2) - (x + 2)/(x - 2)^2))/(x + 2))/(-1/x^2)
| = | lim_(x->∞) (4 x^2)/((x - 2) (x + 2))
exp(lim_(x->∞) (4 x^2)/((x - 2) (x + 2)))
Replace -2 by 0 in 1/(x - 2):
exp(lim_(x->∞) (4 x^2)/(x (x + 2)))
The leading term in the denominator of (4 x)/(x + 2) is x. Divide the numerator and denominator by this:
exp(lim_(x->∞) 4/(1 + 2/x))
The expression 2/x tends to zero as x approaches ∞:
Answer: |e^4