Math(Input=Result) Error!
$${binom}{\left({\left({\frac{{\mathtt{3}}}{{{\mathtt{x}}}^{{\mathtt{2}}}}}{\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}\right)}^{{\mathtt{10}}}\right)} = {binom}{\left(\tiny\text{Error: loop}\right)}$$
$$\left(\dfrac{3}{x^2}-4x^3\right)^{10}\\$$
I think the answer is:
$$10Cr\times \left(\dfrac{3}{x^2}\right)^{\textcolor[rgb]{1,0,0}{10-r}}\times (-4x^3)^{\textcolor[rgb]{1,0,0}{r}}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-2(10-r)} \times x^{3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-2(10-r)+3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-20+2r+3r}\\
=10Cr\times 3^{10-r} \times (-4)^r \times x^{-20+5r}$$
so -20+5r=0 -> r = 4
the term we want is
$$10C\textcolor[rgb]{1,0,0}{4}\times 3^6\times (-4)^4 \times x^0$$
Using sigma notation and factorials for the combinatorial numbers, here is the binomial theorem: