Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #4
avatar+536 
-1
Nov 6, 2017
 #7
avatar+746 
0
Nov 6, 2017
 #5
avatar+26396 
+1

integrals


5) π/20sin13xdx

 

π/20sin13(x)dx=π/20sin(x)sin12(x)dx=π/20sin(x)(sin2(x))6xdx=π/20sin(x)(1cos2(x))6xdx=π/20sin(x)((60)(61)cos2(x)+(62)cos4(x)(63)cos6(x)+(64)cos8(x)(65)cos10(x)+(66)cos12(x))dx=π/20(1cos0(x)sin(x)6cos2(x)sin(x)+15cos4(x)sin(x)20cos6(x)sin(x)+15cos8(x)sin(x)6cos10(x)sin(x)+1cos12(x)sin(x))dx

 

Integration by parts
u=cosn(x)v=cos(x)u=ncosn1(x)sin(x)v=sin(x)

π/20cosn(x)usin(x)vdx=[cosn(x)u(cos(x)v)]π/20π/20ncosn1(x)sin(x)u(cos(x)v)dx=[cosn+1(x)]π/20nπ/20cosn(x)sin(x)dx(n+1)π/20cosn(x)sin(x)dx=[cosn+1(x)]π/20π/20cosn(x)sin(x)dx=[cosn+1(x)]π/20n+1=1n+1

 

π/20(1cos0(x)sin(x)6cos2(x)sin(x)+15cos4(x)sin(x)20cos6(x)sin(x)+15cos8(x)sin(x)6cos10(x)sin(x)+1cos12(x)sin(x))dx=111613+15152017+15196111+1113=10243003

 

laugh

Nov 6, 2017
 #4
avatar+26396 
+2

integrals


4) π/20cos15xdx

 

without substitution:

π/20cos15xdx=π/20cos(x)cos14xdx=π/20cos(x)(cos2(x))7xdx=π/20cos(x)(1sin2(x))7xdx=π/20cos(x)((70)(71)sin2(x)+(72)sin4(x)(73)sin6(x)+(74)sin8(x)(75)sin10(x)+(76)sin12(x)(77)sin14(x))dx=π/20(1sin0(x)cos(x)7sin2(x)cos(x)+21sin4(x)cos(x)35sin6(x)cos(x)+35sin8(x)cos(x)21sin10(x)cos(x)+7sin12(x)cos(x)sin14(x)cos(x))dx

 

Integration by parts

u=sinn(x)v=sin(x)u=nsinn1(x)cos(x)v=cos(x)

π/20sinn(x)ucos(x)vdx=[sinn(x)usin(x)v]π/20π/20nsinn1(x)cos(x)usin(x)vdx=[sinn+1(x)]π/20nπ/20sinn(x)cos(x)dx(n+1)π/20sinn(x)cos(x)dx=[sinn+1(x)]π/20π/20sinn(x)cos(x)dx=[sinn+1(x)]π/20n+1=1n+1

 

π/20(1sin0(x)cos(x)7sin2(x)cos(x)+21sin4(x)cos(x)35sin6(x)cos(x)+35sin8(x)cos(x)21sin10(x)cos(x)+7sin12(x)cos(x)sin14(x)cos(x))dx=111713+21153517+351921111+71131115=20486435

 

laugh

Nov 6, 2017
 #2
avatar+26396 
+2

integrals


2) 103xxdx

 

103xxdx=103x(1x3x)dx=106x16xdx

 

For the integrand 6x16x, substitute u=6x or u5=x56 and

du=16x161dx=16x56dx=161x56dx=161u5dxso dx=6u5du

 

This gives a new lower bound u=60=0 and upper bound u=61=1

=10u1u6u5du=610u61udu

 

For the integrand u61u, substitute v=1u  or u=1v2 and

dv=121udu=12vduso du=2vdv

 

This gives a new lower bound v=1=1 and upper bound v=0=0

=601(1v2)6v(2)vdv=1201(1v2)6v2dv=1201(16v2+15v420v6+15v86v10+v12)v2dv=1201(v26v4+15v620v8+15v106v12+v14)dv=12[v336v55+15v7720v99+15v11116v1313+v1515]01=12(1365+157209+1511613+115)=12(6756756405405+1528957520225225+151842756155925+1351352027025)=5529602027025=135409613515015=409615015

 

laugh

Nov 6, 2017

2 Online Users

avatar