integrals
2) 1∫0√3√x−√xdx
1∫0√3√x−√xdx=1∫0√3√x(1−√x3√x)dx=1∫06√x√1−6√xdx
For the integrand 6√x√1−6√x, substitute u=6√x or u5=x56 and
du=16x16−1dx=16x−56dx=16⋅1x56dx=16⋅1u5dxso dx=6u5du
This gives a new lower bound u=6√0=0 and upper bound u=6√1=1
=1∫0u√1−u⋅6u5du=61∫0u6√1−udu
For the integrand u6√1−u, substitute v=√1−u or u=1−v2 and
dv=−12√1−udu=−12vduso du=−2vdv
This gives a new lower bound v=√1=1 and upper bound v=√0=0
=60∫1(1−v2)6v⋅(−2)vdv=−120∫1(1−v2)6v2dv=−120∫1(1−6v2+15v4−20v6+15v8−6v10+v12)v2dv=−120∫1(v2−6v4+15v6−20v8+15v10−6v12+v14)dv=−12⋅[v33−6v55+15v77−20v99+15v1111−6v1313+v1515]01=12⋅(13−65+157−209+1511−613+115)=12⋅(675675−6⋅405405+15⋅289575−20⋅225225+15⋅184275−6⋅155925+1351352027025)=5529602027025=135⋅4096135⋅15015=409615015
