Questions   
Sort: 
 #1
avatar+9 
0

THE ANSWER IS 

 (x(3)+250x(2)+100x)/((1)/(2)x(2)+25x+9) 

Final result :

2x • (x2 + 250x + 100) —————————————————————— x2 + 50x + 18

Step by step solution :

Step  1  :

1 Simplify — 2

Equation at the end of step  1  :

x)1 ————•x2)+25x)+9) (((2

Step  2  :

Equation at the end of step  2  :

)x2 ———+25x)+9) ((2

Step  3  :

Rewriting the whole as an Equivalent Fraction :

 3.1   Adding a whole to a fraction 

Rewrite the whole as a fraction using  2  as the denominator :

25x 25x • 2 25x = ——— = ——————— 1 2

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole 

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

 3.2       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

x2 + 25x • 2 x2 + 50x ———————————— = ———————— 2 2

Equation at the end of step  3  :

(x2+50x) ————————+9) (2

Step  4  :

Rewriting the whole as an Equivalent Fraction :

 4.1   Adding a whole to a fraction 

Rewrite the whole as a fraction using  2  as the denominator :

9 9 • 2 9 = — = ————— 1 2

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   x2 + 50x  =   x • (x + 50) 

Adding fractions that have a common denominator :

 5.2       Adding up the two equivalent fractions 

x • (x+50) + 9 • 2 x2 + 50x + 18 —————————————————— = ————————————— 2 2

Equation at the end of step  5  :

(x2+50x+18) ——————————— 2

Step  6  :

Equation at the end of step  6  :

(x2 + 50x + 18) ——————————————— 2

Step  7  :

x2+50x+18 Divide x3+250x2+100x by ————————— 2

Step  8  :

Pulling out like terms :

 8.1     Pull out like factors :

   x3 + 250x2 + 100x  =   x • (x2 + 250x + 100) 

Trying to factor by splitting the middle term

 8.2     Factoring  x2 + 250x + 100 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +250x  its coefficient is  250 .
The last term, "the constant", is  +100 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 100 = 100 

Step-2 : Find two factors of  100  whose sum equals the coefficient of the middle term, which is   250 .

     -100   +   -1   =   -101

     -50   +   -2   =   -52

     -25   +   -4   =   -29

     -20   +   -5   =   -25

     -10   +   -10   =   -20

     -5   +   -20   =   -25


For tidiness, printing of 12 lines which failed to find two such factors, was suppressed

Observation : No two such factors can be found !! 
Conclusion : Trinomial can not be factored

Trying to factor by splitting the middle term

 8.3     Factoring  x2+50x+18 

The first term is,  x2  its coefficient is  1 .
The middle term is,  +50x  its coefficient is  50 .
The last term, "the constant", is  +18 

Step-1 : Multiply the coefficient of the first term by the constant   1 • 18 = 18 

Step-2 : Find two factors of  18  whose sum equals the coefficient of the middle term, which is   50 .

     -18   +   -1   =   -19

     -9   +   -2   =   -11

     -6   +   -3   =   -9

     -3   +   -6   =   -9

     -2   +   -9   =   -11

     -1   +   -18   =   -19

     1   +   18   =   19

     2   +   9   =   11

     3   +   6   =   9

     6   +   3   =   9

     9   +   2   =   11

     18   +   1   =   19


Observation : No two such factors can be found !! 
Conclusion : Trinomial can not be factored

Final result :

2x • (x2 + 250x + 100) —————————————————————— x2 + 50x + 18

Nov 29, 2017
 #1
avatar+2442 
+4

If I am not mistaken, this problem requires you to generate the cubic equation of the four points listed. I see that \(f(0)=0\), so one of the coordinates of the x-intercept is certainly located at \((0,0)\).I also notice that there must be another zero located at \(1  because the graph crosses the x-axis there, but we cannot determine exactly where it is yet. An odd-degree polynomial cannot have an even number of real zeros (unless a multiplicity of a zero is even). We have determined already that there are 2 zeros, so a third must be lying somewhere. Yet again, we cannot determine where. 

 

Cubic functions are written in the form \(f(x)=ax^3+bx^2+cx+d\). We can actually solve for d straightaway by plugging in \(f(0)\).

 

\(f(x)=ax^3+bx^2+cx+d\)Plug in \(f(0)\)
\(f(0)=a*0^3+b*0^2+c*0+d\)There is a lot of simplification that can occur here!
\(f(0)=d\)According to your original three points, \(f(0)=0\), so substitute that in.
\(0=d\) 
  

 

Great! We have already solved for one of the missing variables. Our original equation is now \(f(x)=ax^3+bx^2+cx\). It only gets harder from here, though. Let's plug in the remaining points, and let's see what happens!

 

\(f(x)=ax^3+bx^2+cx\)Evaluate this function at f(-1).
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)\)Ok, now simplify.
\(f(-1)=-a+b-c\)By definition, \(f(-1)=15\).
\(15=-a+b-c\) 
  

 

Let's plug in the second point.

 

\(f(1)=a(1)^3+b(1)^2+c(1)\)Simplify from here.
\(f(1)=a+b+c\)\(f(1)=-5\), so plug that back in!
\(-5=a+b+c\) 
 

 

 

Normally, I would just go right ahead and plug in the next point, but these two equations are somewhat unique. 

 

\(\hspace{2mm}15=-a+b-c\\ -5=+a+b+c\)

 

Look at that! Both the a's and the c's will cancel out here! We can solve for b using elimination.

 

\(\hspace{2mm}15=-a+b-c\\ -5=+a+b+c\)Add the equations together.
\(10=2b\)Divide by 2 on both sides!
\(5=b\) 
  

 

Now, let's plug in the third point.

 

\(f(x)=ax^3+bx^2+cx\)Evaluate the function at \(f(2)\)
\(f(2)=a(2)^3+b(2)^2+c(2)\)Now, simplify.
\(f(2)=8a+4b+2c\)Remember that \(f(2)=12 \) and \(b=5\).
\(12=8a+20+2c\)Subtract 20 from both sides.
\(-8=8a+2c\)Divide by 2 because that is the GCF of the coefficients, and it will make the numbers nicer in the long run.
\(-4=4a+c\) 
  

 

Ok, let's compare the previous equation with the first one we calculated. 

 

\(\hspace{1mm}15=-a+b-c\\ -4=4a\hspace{7mm}+c\)

 

It looks like more cancellation can be done, right? Well' let's do that then!

 

\(\hspace{1mm}15=-a+b-c\\ -4=4a\hspace{7mm}+c\)Add both equations together.
\(11=3a+b\)Of course, \(b=5\).
\(11=3a+5\)Now, solve for a.
\(6=3a\) 
\(2=a\) 
  

 

Now, plug this back into an already existing equation to find c.

 

\(-4=4a+c\)\(a=2\), so substitute that value in.
\(-4=4*2+c\)Now, solve for c.
\(-4=8+c\)Subtract 8 from both sides and isolate c.
\(-12=c\) 
  

 

Ok, our function is now clearly defined for the points given. It is now \(f(x)=2x^3+5x^2-12x\). It is time to find the remaining zeros!

 

\(2x^3+5x^2-12x=0\)Factor out a GCF first before doing anything else!
\(x(2x^2+5x-12)=0\)The next step involves finding factors of -24 that add up to 5. (-3 and 8). Break up the linear term into these portions.
\(x(2x^2-3x+8x-12)=0\)Now, factor by grouping. 
\(x[x(2x-3)+4(2x-3)]\) 
\(x(x+4)(2x-3)=0\)Now, set each factor equal to zero and solve.
\(x=0\)\(x+4=0\\ x=-4\)\(2x-3=0\\ 2x=3\\ x=\frac{3}{2}=1.5\)

 

All the zeros have been solved for finally.
  

 

Therefore, the zeros are \(-4,0,1.5\).

Nov 29, 2017
Nov 28, 2017
 #1
avatar+128707 
+3

 x^2 + 2x + 3

 2x^5 + 3x^4 + 8x^3 + 8x^2 + 18x + 9

 

 

We can determine this by polynomial division

 

                              2x^3    -   x^2      +    4x       + 3

x^2  +  2x  +  3  [   2x^5    +   3x^4    +    8x^3   +  8x^2  +   18x   +  9  ]

                              2x^5    +  4x^4    +    6x^3

                              __________________________________

                                          - x^4      +    2x^3     +    8x^2

                                          -x^4      -      2x^3     -     3x^2

                                        _________________________

                                                             4x^3    +  11x^2    +  18x

                                                             4x^3    +    8x^2    +  12x

                                                            __________________________

                                                                                3x^2   +  6x      +  9

                                                                                3x^2   +  6x      +  9

                                                                                _________________

                                                                                                            0

The answer is shown in red

 

 

cool cool cool

Nov 28, 2017

1 Online Users

avatar