4. Given triangle ABC, AD is perpendicular to BC such that DC = 2 and BD = 3. If angle BAC = 45 degrees, then find the area of triangle ABC.
We have something like this :
A
B 3 D 2 C
Using the Pythagorean Theorem :
AB^2 = BD^2 + AD^2
AC^2 = DC^2 + AD^2
AB^2 = 9 + AD^2
AC^2 = 4 + AD^2 subtract these
AB^2 - AC^2 = 5
AB^2 = 5 + AC^2
AB = sqrt (5 + AC^2)
Using the Law of Cosines
BC^2 = AB^2 + AC^2 - 2 (AB * AC)cos (45°)
Let x = AC
5^2 = (5 + x^2) + x^2 - 2* [ sqrt (5 + x^2) * x] (sqrt (2) /2 )
25 = 5 + x^2 + x^2 - sqrt (2) [ sqrt (5 + x^2) * x ]
Solving this for the positive value of x gives x = 2sqrt (10) = sqrt (40) = AC
And AB = sqrt (5 + AC^2) = sqrt (5 + 40) = sqrt (45)
So....the area of triangle ABC =
(1/2) AC * AB sin (45°) =
(1/2) (sqrt (40) * sqrt (45) * [ sqrt (2) / 2 ] =
(1/4) * sqrt (3600) =
(1/4) * 60 =
15 units^2