Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #3
avatar+569 
+3
Jul 21, 2020
 #2
avatar+118703 
0

(5x^4 -8x^3 +2x^2 +4x+7)/(x+2)^4 = a+b/(x+2) +c/(x+2)^2 +d/(x+2)^3 +e/(x+2)^4

 

(5x48x3+2x2+4x+7)(x+2)4=a+b(x+2)+c(x+2)2+d(x+2)3+e(x+2)4 (5x48x3+2x2+4x+7)(x+2)4=a(x+2)4+b(x+2)3+c(x+2)2+d(x+2)+e(x+2)4 (5x48x3+2x2+4x+7)=a(x+2)4+b(x+2)3+c(x+2)2+d(x+2)+e (5x48x3+2x2+4x+7)=a(x4+8x3+24x2+32x+16)+b(x+2)3+c(x+2)2+d(x+2)+ea=5(8x3+2x2+4x+7)=5(8x3+24x2+32x+16)+b(x+2)3+c(x+2)2+d(x+2)+e (8x3+2x2+4x+7)=5(8x3+24x2+32x+16)+b(x3+32x2+34x+8)+c(x+2)2+d(x+2)+e(8x3+2x2+4x+7)=5(8x3+24x2+32x+16)+b(x3+6x2+12x+8)+c(x+2)2+d(x+2)+e8=40+bb=48 (2x2+4x+7)=5(24x2+32x+16)+48(6x2+12x+8)+c(x+2)2+d(x+2)+e

 

Just keep going till you have them all.

There is probably a better way though.

 

Coding:

\frac{(5x^4 -8x^3 +2x^2 +4x+7)}{(x+2)^4} =a+\frac{ b}{(x+2)} +\frac{c}{(x+2)^2} +\frac{d}{(x+2)^3} +\frac{e}{(x+2)^4}\\
\\~\\
\frac{(5x^4 -8x^3 +2x^2 +4x+7)}{(x+2)^4} =\frac{a(x+2)^4+ b(x+2)^3 +c(x+2)^2+d(x+2) +e}{(x+2)^4}\\~\\
(5x^4 -8x^3 +2x^2 +4x+7) =a(x+2)^4+ b(x+2)^3 +c(x+2)^2+d(x+2) +e\\~\\
(5x^4 -8x^3 +2x^2 +4x+7) =a(x^4+8x^3+24x^2+32x+16)+ b(x+2)^3 +c(x+2)^2+d(x+2) +e\\
a=5\\
( -8x^3 +2x^2 +4x+7) =5(8x^3+24x^2+32x+16)+ b(x+2)^3 +c(x+2)^2+d(x+2) +e\\~\\
( -8x^3 +2x^2 +4x+7) =5(8x^3+24x^2+32x+16)+ b(x^3+3*2*x^2+3*4x+8)+c(x+2)^2+d(x+2) +e\\
( -8x^3 +2x^2 +4x+7) =5(8x^3+24x^2+32x+16)+ b(x^3+6x^2+12x+8) +c(x+2)^2+d(x+2) +e\\
-8=40+b\\
b=-48\\~\\
( 2x^2 +4x+7) =5(24x^2+32x+16)+ -48(6x^2+12x+8) +c(x+2)^2+d(x+2) +e\\

Jul 21, 2020
 #2
avatar+33654 
+2
Jul 21, 2020

2 Online Users

avatar