Questions   
Sort: 
 #1
avatar+118723 
+5

 

$${\mathtt{a}} = {\sqrt{{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}}}$$     

 

 find      $${{\mathtt{a}}}^{{\mathtt{2}}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = {{\sqrt{{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}}}}^{\,{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\sqrt{{\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}}}}^{\,{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = \left({\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}\right){\mathtt{\,\small\textbf+\,}}\left({\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}\right){\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{\left(\left({\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}\right){\mathtt{\,\times\,}}\left({\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}\right)\right)}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,-\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{\left({\mathtt{36}}{\mathtt{\,-\,}}{\mathtt{11}}\right)}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{25}}}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{12}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{5}}$$

 

$${{\mathtt{a}}}^{{\mathtt{2}}} = {\mathtt{2}}$$

 

and that means that   $$a=\pm \sqrt{ 2}$$          COOL !!!

Dec 14, 2014
 #2
avatar+118723 
0
Dec 14, 2014
 #3
avatar+118723 
0
Dec 14, 2014
 #2
avatar+130511 
+5
Dec 14, 2014
 #4
avatar+130511 
0
Dec 14, 2014
 #3
avatar+118723 
+5
Dec 14, 2014
 #2
avatar+130511 
+10

There are infinite possibilites for this....

The equation will be in the form

x^2 / 121  - y^2 / b^2   = 1        where "a" = 11 and a^2  = 121

Here's a graph when b = 5.........https://www.desmos.com/calculator/ptqorqve0j

Here's a graph when b = 13.........https://www.desmos.com/calculator/tmv8vqrcl6

As "a" stays constant and "b" increases, the branches of the hyperbola are less "curved,"  and the focal points move further from the center.......(as expected)

Finally....here's a graph when b = 100........https://www.desmos.com/calculator/26r6fevyc3

Notice that the hyperbola appears to be almost "upright"  !!!

 

Dec 14, 2014

0 Online Users