Questions   
Sort: 
 #1
avatar+118725 
+10

think about the first quadrant of a unit circle..

The unit circle is the circle with a radius of 1 and a centre of (0,0)

 

The fist quadrant covers angles 0 to pi/2.   

At first only consider proper acute angles. 

 

You should watch this video - it is very good.   :)

 

https://www.khanacademy.org/math/trigonometry/unit-circle-trig-func/Trig-unit-circle/v/unit-circle-definition-of-trig-functions-1

 

 

---------------------------------------------------

 

$$\\cos \theta = \frac{adj}{hyp}\\\\
$but the hypotenuse is the radius of the circle so it is 1$\\\\
so\\
cos \theta = \frac{x}{1}=x\\\\
$By the same type of logic you can see that$\\\\
sin\theta = y$$

 

now just follow this for all angles.

With regards to the unit circle.   

  $$cos\theta$$  is given by the x value 

and

$$sin\theta$$     is given by the y value.

 

 

If you develope a good understanding of the unit circle and what it represents senior trig will be easier.

Mar 16, 2015
 #1
avatar+118725 
+5
Mar 16, 2015
 #463
avatar+118725 
+8

@@ End of Day Wrap   Mon 16/3/15     Sydney, Australia Time   10:25 pm     ♪ ♫

 

Good evening,     (๑‵●‿●‵๑)

 

Our magnificent answerers today were Gibsonj338, Shaomada, CPhill, Alan, Heureka, Bertie and Rosala.

A great big thank you to each of you.       

 

Interest Posts:

 

1)    What is the difference between a cat and a comma?     Thanks anon.

2)    Solving a difficult inequality                 Thanks  Melody and CPhill

3)    Tricky trig derivative.                          Thanks Melody and CPhill

4)    Geometry                                          Not answered.

  

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 16, 2015
 #270
avatar+118725 
0

Tues 17/3/15

1)    The Monty Hall problem.                   Yes again LOL    I found a cool clip for it.

2)    Finding volume of an odd shape.       Melody

3)    What is the last digit of pi?               Thanks TayJay, anon and Heureka    

4)     Manipulating algebra                        Thanks CPhill and anon

5)     Physics - Force and Power.               Thanks Alan

6)     Probability  (secret santa)                 Melody

7)     Fining an angle using sine rule           Thanks melody and CPhill.

         

               ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Mar 16, 2015
 #2
avatar+118725 
+5

Thanks CPhill, I just want to see if I can do it too.        (๑‵●‿●‵๑)

 

Mmm that looks tricky.

 

 

let

$$y= -6*sec(sin(5x^2+3x+2))$$

let

$$\\g = sin(5x^2+3x+2)\\\\
\frac{dg}{dx}=(10x+3)[cos(5x^2+3x+2)]\\\\\\
y=-6sec(g)\\\\
y=-6(cos(g))^{-1}\\\\
\frac{dy}{dg}=6(cos(g))^{-2}(-sin(g))\\\\
\frac{dy}{dg}=\frac{-6sin(g)}{cos^2(g)}\\\\\\
\frac{dy}{dx}=\frac{dy}{dg}\times \frac{dg}{dx}\\\\
\frac{dy}{dx}=\frac{-6sin(g)}{cos^2(g)}\times (10x+3)[cos(5x^2+3x+2)]\\\\$$

 

$$\\\frac{dy}{dx}=\frac{-6sin(g)(10x+3)[cos(5x^2+3x+2)]}{cos^2(g)}\\\\ \frac{dy}{dx}=\frac{-6sin(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}{cos^2(sin(5x^2+3x+2))}\\\\ \frac{dy}{dx}=-6tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))(10x+3)[cos(5x^2+3x+2)]}\\\\
\frac{dy}{dx}=-(60x+18)tan(sin(5x^2+3x+2)sec(sin(5x^2+3x+2))[cos(5x^2+3x+2)]}\\\\$$

 

WOW this is the same as CPhill's answer     (๑‵●‿●‵๑)

Mar 16, 2015
 #1
avatar+118725 
0
Mar 16, 2015

0 Online Users