Questions   
Sort: 
 #1
avatar+118723 
+5
Apr 18, 2015
 #6
avatar+118723 
+14

@@ End of Day Wrap    Sat 18/4/15 Sydney,   Australia Time   9:40pm   ♪ ♫

 

Good evening   

 

Great answers today from Alan, Trincent, Zacismyname, Badinage, CPhill, Brittany and Zegroes. Thank you :)

 

Rosala is back.  She has been away at a wedding the second one in about a month.  I think she only came home to change her clothes      Anyway, she is back home and back with us now.  Welcome back Rosala.  

 

Interest posts:

 

FTJ means "For the Juniors"

1)      Cute pic                                                                       Thanks anon

2)      Forum fun                                                                    Thanks Badinage and BrittanyJ

3)      I am not really sure that these answers helped             Thanks Zegroes and CPhill   

4)      Simplifying a complex number                                         Melody

5)      What is the e on the calculator?       FTJ                          Melody

6)      Graphing calcs  and factorising cubics                              Thanks Badinage, Melody and Alan  

7)      Bernoulli trial - confidence interval                                  Not answered - I tried and failed      

8)      Solving an inequality                                                     Thanks Alan and Melody                                                                   

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Apr 18, 2015
 #7
avatar+118723 
0

Sun 19/4/15

FTJ means "For the Juniors"

1)      Today's Fun thread                                                                  Thanks BrittanyJ

2)      Warm Fuzzy post :)                                                                  Thanks anon 

3)      Probability 1.  Want to see the hard way just ask me.              Thanks Alan and Melody         

4)      Probability 2 (number theory?)                                                  No answer yet   

5)      Probability 3 Coin tossing - I made a discovery here               Thanks Melody and Alan

6)      Probability 4  Expected value and others                                    No answer yet

7)      Probability 5  I really like this answer.                                       Thanks CPhill

8)      Probability 6, nongon  I only did part A                                      Melody

9)      Expected values                                                                       Thanks Alan

10)    Trig and factorising                                                                  Thanks Melody and Alan

11)    Expected values                                                                      Thanks Alan

12)    Expected values 2                                                                    Not answered yet 

13)    Finding Total length        FTJ                                                    Thanks Mellie 

14)    Function question                                                                    Thanks Alan and Melody

15)    Great geometry / integration question                                       Thanks Melody and CPhill

16)    Power of infinity   - it is tricky                                                   Thanks Geno

                                                   

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Apr 18, 2015
 #4
avatar+118723 
0
Apr 18, 2015
 #1
avatar+118723 
+5

Bertie, (or anyone with statistics knowledge) can you help please ?

Pretty please with sprinkles on top :)))

 

                                          

 

I do not know if this is correct.

I don't know what to do with the 0.04 either  

I am copying Bertie's answer from here

 

 

$$\\SE=\sqrt{\dfrac{p*q}{n}}\\\\
p=\frac{62}{70},\qquad q=\frac{8}{70},\qquad and \qquad n=70\\\\
SE=\sqrt{\dfrac{p*q}{n}}\\\\
SE=\sqrt{\dfrac{\frac{62}{70}*\frac{8}{70}}{70}}\\\\
SE=0.0380\qquad $4 dec places)$$

 

$${\sqrt{{\frac{\left(\left({\frac{{\mathtt{62}}}{{\mathtt{70}}}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{8}}}{{\mathtt{70}}}}\right)\right)}{{\mathtt{70}}}}}} = {\mathtt{0.038\: \!027\: \!150\: \!037\: \!068\: \!1}}$$

 

$${\frac{{\mathtt{62}}}{{\mathtt{70}}}} = {\frac{{\mathtt{31}}}{{\mathtt{35}}}} = {\mathtt{0.885\: \!714\: \!285\: \!714\: \!285\: \!7}}$$

 

$$0.8857$$    is the mean of this distribution.

 

A 95% confidence interval is within 2 standard errors.   Mmm

So the 95% conficence limits will be

$$\\\displaystyle 0.8857 \pm 2\times 0.0380 = 0.8857\pm 0.076\\\\
$So the lower limit is $0.8097 \\
$and the upper limit is $0.9617\\$$

 

Now I am guessing EVEN more.  :)

NO I  am not going to bother because I really have no idea what I am doing  :((

Maybe Bertie can help :/

Apr 18, 2015

0 Online Users