Questions   
Sort: 
 #5
avatar+26400 
+15

how do you solve 2sin(theta) = cos(theta/3) ?

 

$$\boxed{~~ 2\sin(\theta) = \cos \left( \frac{ \theta}{3} \right) ~~}$$

 $$\small{\text{$\mathmf{Formula:~~}
\boxed{\cos (3x) = 4 \cos^3 (x) - 3 \cos (x) \qquad 3x=\theta \qquad \cos{( \theta )}=4\cos^3{( \frac{\theta }{3} )}-3\cos{ ( \frac{\theta }{3}) } }
$}}\\\\
\small{\text{$
\begin{array}{rcl}
2\sin(\theta) &=& \cos \left( \frac{ \theta}{3} \right)\\\\
2\sqrt{ 1-\cos^2{\theta } } &=& \cos \left( \frac{ \theta}{3} \right)\\\\
4(\sqrt{ 1-\cos^2{\theta } })^2 &=& \cos^2 \left( \frac{ \theta}{3} \right)\\\\
4( 1-\cos^2{\theta } ) &=& \cos^2 \left( \frac{ \theta}{3} \right)\\\\
4(~ 1-
[4\cos^3{( \frac{\theta }{3} )} - 3\cos{ ( \frac{\theta }{3}) } ]^2~) &=& \cos^2 \left( \frac{ \theta}{3} \right)\\\\
&\cdots &\\
64\cos^6{ (\frac{ \theta}{3}) } - 96 \cos^4{ (\frac{ \theta}{3}) } + 37\cos^2{ (\frac{ \theta}{3}) } -4 &=& 0 \\\\
\end{array}
$}}$$

 

$$\small{\text{$
\mathrm{substitute:~~} \boxed{~~u = \cos^2{ \frac{\theta}{3} } \qquad \theta_{1\dots 4} = \pm~3\arccos(~\pm\sqrt{u}~) \pm 6k\pi\quad k=0,1,2,3\cdots ~~ }
$}}$$

 

$$\small{\text{$
\boxed{~~64u^3 - 96u^2 + 37u -4 = 0 ~~}
$}}\\\\
\small{\text{$
\begin{array}{rcl}
u_1 &=& 0.970804435482 \\
u_2 &=& 0.189548547332 \\
u_3 &=& 0.339647017333
\end{array}
$}}$$

 

Solutions:

$$\\ \small{\text{
$
\begin{array}{lrcl}
& u_1 &=& 0.970804435482 \\
\mathbf{okay} & \mathbf{\theta} &\mathbf{=}& \mathbf{0.515128919784\pm 6k\pi} \\
false &\theta &=& 8.909649040986 \\
false &\theta &=& -0.515128919784 \\
\mathbf{okay} & \mathbf{\theta} &\mathbf{=}& \mathbf{-8.909649040986\pm 6k\pi} \\
\\
& u_2 &=& 0.189548547332 \\
false & \theta &=& 3.361035503365 \\
\mathbf{okay} & \mathbf{\theta} &=& \mathbf{6.063742457405\pm 6k\pi} \\
\mathbf{okay} & \mathbf{\theta} &=& \mathbf{-3.361035503365\pm 6k\pi} \\
false & \theta &=& -6.063742457405 \\
\\
& u_3 &=& 0.339647017333 \\
\mathbf{okay} & \mathbf{\theta} &\mathbf{=}& \mathbf{2.845906582419\pm 6k\pi} \\
false & \theta &=& 6.578871378351 \\
false & \theta &=& -2.845906582419 \\
\mathbf{okay} & \mathbf{\theta} &\mathbf{=}& \mathbf{-6.578871378351\pm 6k\pi}
\end{array}
$}}$$

 

$$\mathbf{\theta ~in~ rad}$$

 

Jun 12, 2015
 #66
avatar+118723 
+5

@@ End of Day Wrap  Fri 12/6/15   Sydney, Australia Time   12:05am  (Yes it is Sat)   ♪ ♫

 

Good evening, (It is for me anyway  )

 

Today our brilliant mathematicians were Radix, Bertie, CPhill, ThisGuy Alan and worstsubjectmath.

(There you go worstsubjectmath, I bet you never thought you would ever be referred to a a 'brilliant mathematician'  )

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts

 

FTJ means 'For the juniors' 

1) Experiment relating to Infinite Monkey Theorem.          Thanks LancelotLink

                     Yes LancelotLink has been monkeying around again!!

2) Modulo arithmetic continues to continue                   Thanks Heureka

3) Inscribed Golden Rectangles - Continued                     Thanks Heureka and CPhill

4) Finding the height of a cone                                        Thanks anon and Melody

5) Find the area of a triangle                                           Thanks CPhill

6) Biased and unbiased surveys                                       Melody

7) Max area of inscribed Kepler triangle                           Fiora and Heureka

8) Energy needed to heat water                                      Thanks Alan

9) Trig identity                                                               Melody

10) Another trig equation                                                Thanks CPhill and Melody

11) Find the wavelength of a beam of light                       Thanks Heureka and Melody

12) If the calc says infinity and you know it's no, what can you do?     Thanks Chris and Melody

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 12, 2015
 #57
avatar+118723 
0

Sat 13/6/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

FTJ means 'For the juniors' 

1)  Trig equation continued (hard one)             Thanks Alan and Heureka 

2)  A temperature contraversy                         Thanks Alan, Civonamzuk and Dragonlance

3)  Finding a percentage  FTJ                           Thanks Alan anon and Melody.

4)  Age, squares and cubes                              Thanks anon

5)  Ellipse                                                       Thanks CPhill and Melody

6)  Find centre and radius of a circle                  Thanks Alan and Melody

7)  How many people must have everything?     Not answered ?

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 12, 2015
 #4
avatar+118723 
+5
Jun 12, 2015
 #1
avatar+130517 
+10

Here's a graphical solution......https://www.desmos.com/calculator/rhbj1xne7n

 

The solutions occur at about   29.5°, 163.1° and 347.4°  on [0, 360] degrees

 

 

Jun 12, 2015

1 Online Users

avatar