Questions   
Sort: 
 #3
avatar+26400 
+10

Integrate (cos^-1x)^2 /(1-x^2)^1/2

 

$$\small{\text{$
\begin{array}{lrcl}
& \int{
\dfrac{[ \cos^{-1}{(x)} ]^2 }
{ (1-x^2)^{\frac{1}{2}} } \ dx }
= \mathbf{ \int{
[\arccos{(x)}]^2 \cdot
\dfrac{ 1 }{ \sqrt{ (1-x^2) } } \ dx } }\\\\
\end{array}
$}}\\\\$$

 

$$\small{\text{$
\boxed{
\begin{array}{lrcl}
\mathrm{Formula:~}
& y &=& \dfrac{ f(x)^{n+1} } {n+1} \\\\
& y' &=& \left(\dfrac{n+1}{n+1}\right) \cdot f(x)^{n+1-1}\cdot f'(x) \\\\
& y' &=& f(x)^{n}\cdot f'(x) \\\\
&\mathbf{
\int{ f(x)^{n}\cdot f'(x) \ dx }
} & \mathbf{=} & \mathbf{ \dfrac{ f(x)^{n+1} } {n+1} }
\end{array}}
$}}$$

 

$$\small{\text{$
\begin{array}{lrcl}
&\mathbf{
\int{ f(x)^{n}\cdot f'(x) \ dx }
} & \mathbf{=} & \mathbf{ \dfrac{ f(x)^{n+1} } {n+1} }
\qquad f(x) = \arccos{(x)}
\qquad f'(x)= -\dfrac{ 1 }{ \sqrt{ (1-x^2) } }\\\\
& \int{ \left[ \arccos{(x)} \right]^2 \cdot
\left( -\dfrac{ 1 }{ \sqrt{ (1-x^2) } }
\right) \ dx }
& = &
\dfrac{ \left[ \arccos{(x)} \right]^{3} } {3} \\\\
& -\int{ \left[ \arccos{(x)} \right]^2 \cdot
\left( \dfrac{ 1 }{ \sqrt{ (1-x^2) } }
\right) \ dx }
& = &
\dfrac{ \left[ \arccos{(x)} \right]^{3} } {3} \\\\
& \int{ \left[ \arccos{(x)} \right]^2 \cdot
\left( \dfrac{ 1 }{ \sqrt{ (1-x^2) } }
\right) \ dx }
& = &
-\dfrac{ \left[ \arccos{(x)} \right]^{3} } {3} \\\\
& \int{ \left[ \arccos{(x)} \right] ^2 \cdot
\left( \dfrac{ 1 }{ \sqrt{ (1-x^2) } }
\right) \ dx }
& = &
-\dfrac{1}{3} \cdot \left[ \arccos{(x)} \right]^{3} \\\\
& \int{ \left[ \arccos{(x)} \right]^2 \cdot
\left( \dfrac{ 1 }{ \sqrt{ (1-x^2) } }
\right) \ dx }
& = &
-\dfrac{1}{3} \cdot \left[\cos^{-1}{(x)}\right]^3 \\\\
\end{array}
$}}$$

 

Jun 19, 2015
 #72
avatar+118723 
0

@@ End of Day Wrap  Fri 19/6/15   Sydney, Australia Time   9:35pm     ♪ ♫

 

Hi all,

 

It was very quiet until a short time ago when some fun hard ones came along.  Anyway, there were some really good questions and answers.  Today our honorable answerers were CPhill, Civonamzuk, Syllogist, Headingnorth, Alan, Radix and Heureka.  Thanks all  

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts

 

FTJ means 'For the juniors' 

1) How to calculate square root by hand?            Thanks CPhill and Civonamzuk.

2) Continuous Time Markov Chain                        Thanks Alan      

3) Irrational no. * rational no. = ?                        Thanks CPhill, Headingnorth and Alan        

4) Gradient of a line through 2 points                   Thanks CPhill and heureka 

5) Angles on parallel lines  Z , C , and F                Thanks anon and Melody

6) Puzzle       FTJ                                                Thanks anon and Melody

7) Equation - 2 quite different solutions               Thanks anon and Melody

8) Equation to solve - good practice.                    Thanks Heureka

9) Ratio problem                                                Thanks Alan

10) Will the pilot get home?                                Thanks CPhill and Melody

11) Inverse trig integral                                     Thanks Syllogist and Melody

12) Difficult quadratic equation                           Thanks Syllogist, Heureka and Melody

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 19, 2015
 #1
avatar+125 
+8
Jun 19, 2015
 #1
avatar+125 
+8

$${\mathtt{y}} = {{\mathtt{x}}}^{{\mathtt{3}}}$$

$${{\mathtt{y}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{y}} = {\mathtt{2}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{2}}\\
{\mathtt{y}} = -{\mathtt{1}}\\
\end{array} \right\}$$

$${{\mathtt{x}}}^{{\mathtt{3}}} = {\mathtt{2}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\frac{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{0.629\: \!960\: \!524\: \!947\: \!436\: \!6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.091\: \!123\: \!635\: \!972\: \!428\: \!7}}{i}\\
{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{0.629\: \!960\: \!524\: \!947\: \!436\: \!6}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.091\: \!123\: \!635\: \!972\: \!428\: \!7}}{i}\right)\\
{\mathtt{x}} = {\mathtt{1.259\: \!921\: \!049\: \!894\: \!873\: \!2}}\\
\end{array} \right\}$$

$${{\mathtt{x}}}^{{\mathtt{3}}} = -{\mathtt{1}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = -{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}\left({\mathtt{\,-\,}}{\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.866\: \!025\: \!403\: \!785}}{i}\right)\\
{\mathtt{x}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{0.866\: \!025\: \!403\: \!785}}{i}\\
{\mathtt{x}} = -{\mathtt{1}}\\
\end{array} \right\}$$

So the real solutions are:

  • $${\mathtt{x}} = {{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}$$
  • $${\mathtt{x}} = -{\mathtt{1}}$$
.
Jun 19, 2015
 #63
avatar+118723 
0

Sat 20/6/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

FTJ means 'For the juniors' 

1) Ratio Problem Continued               Thanks Alan, CPhill and Civonamzuk

2) Trig integration Continued             Thanks Syllogist, Melody. CPhill, Alan and Heureka

3) Trig integration2 Continued            Thanks Heureka and Melody

4) Difficult fraction equation               Thanks Radix, Melody Alan

5) Statistics - Confidence interval       Thanks Alan

 

                        ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 19, 2015
 #2
avatar+118723 
+10

You might find this helpful

https://www.mathsisfun.com/geometry/parallel-lines.html

 

alternate angles make a z shape

Co-interior angles make a C shape

and 

Corresponding angles make an F shape.

 

--------------

If you scroll down on this one it willshow you the Z, C and the F very clearly :)

http://passyworldofmathematics.com/angles-and-parallel-lines/

Jun 19, 2015

1 Online Users