This type of integral isn't that difficult.....just tedious.....!!!!!
∫(sin(x))^4 dx =
∫ [sin^2x)]^2 dx = sin^2x = [1 - cos(2x)] / 2 = 1/2 - cos(2x)/2
∫ [ 1/2 - cos(2x)/2]^2 dx =
∫ 1/4 - (1/2)cos(2x) + cos^2(2x)/4 dx =
[1/4]x - (1/2) ∫ cos (2x)dx + (1/4) ∫ cos^2(2x) dx
For the second integral let u = 2x du = 2 dx du /2 = dx
[1/4]x - (1/2) ∫ cos(u) du/2 + (1/4) ∫ cos^2(2x) dx
[1/4]x - (1/4) ∫ cos(u) du + (1/4) ∫ cos^2(2x) dx
[1/4x] - [1/4] sin (u) + (1/4) ∫ cos^2(2x) dx
[1/4]x - [1/4] sin(2x) + (1/4) ∫ cos^2(2x) dx
For the last integral ........ cos^2(2x) = [ 1 + cos(4x] / 2 = 1/2 + cos(4x)/2
[1/4]x - [1/4]sin(2x) + (1/4) ∫ 1/2 + cos(4x)/2 dx
[1/4]x - [1/4]sin(2x) + [1/8]x + (1/8) ∫ cos(4x) dx
[3/8]x - [1/4]sin(2x) + (1/8) ∫ cos(4x) dx
As before.....let u = 4x du = 4dx du/4 = dx
[3/8]x -[1/4]sin(2x) + (1/8) ∫ cos(u) du/4
[3/8]x -[1/4]sin(2x) + (1/32) ∫ cos(u) du
[3/8]x -[1/4]sin(2x) + (1/32) sin(u) + C =
[3/8]x -[1/4]sin(2x) + (1/32) sin(4x) + C =
[1/32] [ 12x - 8sin(2x) + sin(4x) ] + C
