I do not understand how you got to \(sin(\Theta)=1.33sin(\Theta)/(-0.1135188)\); however, this is how I would sove this equation.
\(1.33\times sin(25) = 1.5\times sin(\Theta)\)
\(1.33\times -0.132351750098 ≈ 1.5\times sin(\Theta)\)
\(-0.17602782763034 ≈ 1.5\times sin(\Theta)\)
\(\frac{-0.17602782763034}{1.5} ≈ \frac{1.5\times sin(\Theta)}{1.5}\)
\(\frac{-0.17602782763034}{1.5} ≈ \frac{1\times sin(\Theta)}{1}\)
\(\frac{-0.17602782763034}{1.5} ≈ 1\times sin(\Theta)\)
\(\frac{-0.17602782763034}{1.5} ≈ sin(\Theta)\)
\(-0.1173518850868933 ≈ sin(\Theta)\)
\({sin}^{-1}(-0.1173518850868933) ≈ {sin}^{-1}[sin(\Theta)]\)
\(-0.11762291934 ≈\Theta\)
\(\Theta≈-0.11762291934\)
.