1. Here's a graph of the points to get an idea of what the function looks like.
average rate of change = \(\frac{\text{change in }f(x)}{\text{change in }x}\)
average rate of change over the interval [-6, -4] = \( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\)
\( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\,=\,\frac{ (-0.0046) \,-\, (-0.0154) }{ (-6) \,-\, (-4) }\,=\,\frac{ 0.0108 }{-2 }\,=\,- 0.0054\)
average rate of change over the interval [-6, -4] = - 0.0054
Notice that this is just the slope of the line through the points ( -6, f(-6) ) and ( -4, f(-4) ) .
average rate of change over the interval [-3, -1] = \( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\)
\( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\,=\, \frac{ (-0.0357) \,-\, (-0.5)}{ (-3) \,-\,( -1) }\,=\, \frac{0.4643}{ -2 }\,=\,- 0.23215\)
average rate of change over the interval [-3, -1] = - 0.23215
How much greater is - 0.0054 than - 0.23215 ?
(-0.0054) - (-0.23215) = 0.22675