Questions   
Sort: 
 #6
avatar+130099 
+3
Feb 6, 2018
Feb 5, 2018
 #2
avatar+1495 
-1
 #1
avatar+9481 
+4

1.    Here's a graph of the points to get an idea of what the function looks like.

 

average rate of change   =   \(\frac{\text{change in }f(x)}{\text{change in }x}\)

 

 

average rate of change over the interval  [-6, -4]   =   \( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\)

 

\( \frac{ f(-6) \,-\, f(-4)}{ (-6) \,-\,( -4) }\,=\,\frac{ (-0.0046) \,-\, (-0.0154) }{ (-6) \,-\, (-4) }\,=\,\frac{ 0.0108 }{-2 }\,=\,- 0.0054\)

 

average rate of change over the interval  [-6, -4]   =   - 0.0054

 

Notice that this is just the slope of the line through the points  ( -6, f(-6) )  and  ( -4, f(-4) ) .

 

 

average rate of change over the interval  [-3, -1]   =   \( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\)

 

\( \frac{ f(-3) \,-\, f(-1)}{ (-3) \,-\,( -1) }\,=\, \frac{ (-0.0357) \,-\, (-0.5)}{ (-3) \,-\,( -1) }\,=\, \frac{0.4643}{ -2 }\,=\,- 0.23215\)

 

average rate of change over the interval  [-3, -1]   =   - 0.23215

 

 

How much greater is  - 0.0054  than  - 0.23215  ?

 

(-0.0054)  -  (-0.23215)   =   0.22675

Feb 5, 2018
 #3
avatar+4622 
+2
Feb 5, 2018

2 Online Users

avatar