Questions   
Sort: 
 #2
avatar+118658 
+3

I do not know what the answer is but I did find this artical.

 

https://brilliant.org/wiki/triangles-orthocenter/

 

Maybe it can help you. OR maybe you can find some other artical or you tube clip that can help you.

 

Let me know if you work it out. I am interested too. 

Jan 28, 2019
 #2
avatar+6251 
+1
Jan 28, 2019
 #1
avatar+26388 
+7

The numbers 1,2,3,4,5,6,7,8,9 are arranged in a list so that each number is
either greater than all the numbers that come before it
or is less than all the numbers that come before it.
For example, 4,5,6,3,2,7,1,8,9 is one such list:
notice that (for instance) the 6 is greater than all the numbers that come before it,
and the 2 is less than all the numbers that come before it.
How many such lists of the numbers 1,2,3,4,5,6,7,8,9 are possible?

 

\(\begin{array}{|r|r|} \hline 1.) & 123456789 \\ 2.) & 213456789 \\ 3.) & 231456789 \\ 4.) & 234156789 \\ 5.) & 234516789 \\ 6.) & 234561789 \\ 7.) & 234567189 \\ 8.) & 234567819 \\ 9.) & 234567891 \\ 10.) & 321456789 \\ 11.) & 324156789 \\ 12.) & 324516789 \\ 13.) & 324561789 \\ 14.) & 324567189 \\ 15.) & 324567819 \\ 16.) & 324567891 \\ 17.) & 342156789 \\ 18.) & 342516789 \\ 19.) & 342561789 \\ 20.) & 342567189 \\ 21.) & 342567819 \\ 22.) & 342567891 \\ 23.) & 345216789 \\ 24.) & 345261789 \\ 25.) & 345267189 \\ 26.) & 345267819 \\ 27.) & 345267891 \\ 28.) & 345621789 \\ 29.) & 345627189 \\ 30.) & 345627819 \\ 31.) & 345627891 \\ 32.) & 345672189 \\ 33.) & 345672819 \\ 34.) & 345672891 \\ 35.) & 345678219 \\ 36.) & 345678291 \\ 37.) & 345678921 \\ 38.) & 432156789 \\ 39.) & 432516789 \\ 40.) & 432561789 \\ 41.) & 432567189 \\ 42.) & 432567819 \\ 43.) & 432567891 \\ 44.) & 435216789 \\ 45.) & 435261789 \\ 46.) & 435267189 \\ 47.) & 435267819 \\ 48.) & 435267891 \\ 49.) & 435621789 \\ 50.) & 435627189 \\ 51.) & 435627819 \\ 52.) & 435627891 \\ 53.) & 435672189 \\ 54.) & 435672819 \\ 55.) & 435672891 \\ 56.) & 435678219 \\ 57.) & 435678291 \\ 58.) & 435678921 \\ 59.) & 453216789 \\ 60.) & 453261789 \\ 61.) & 453267189 \\ 62.) & 453267819 \\ 63.) & 453267891 \\ 64.) & 453621789 \\ 65.) & 453627189 \\ 66.) & 453627819 \\ 67.) & 453627891 \\ 68.) & 453672189 \\ 69.) & 453672819 \\ 70.) & 453672891 \\ 71.) & 453678219 \\ 72.) & 453678291 \\ 73.) & 453678921 \\ 74.) & 456321789 \\ 75.) & 456327189 \\ 76.) & 456327819 \\ 77.) & 456327891 \\ 78.) & 456372189 \\ 79.) & 456372819 \\ 80.) & 456372891 \\ 81.) & 456378219 \\ 82.) & 456378291 \\ 83.) & 456378921 \\ 84.) & 456732189 \\ 85.) & 456732819 \\ 86.) & 456732891 \\ 87.) & 456738219 \\ 88.) & 456738291 \\ 89.) & 456738921 \\ 90.) & 456783219 \\ 91.) & 456783291 \\ 92.) & 456783921 \\ 93.) & 456789321 \\ 94.) & 543216789 \\ 95.) & 543261789 \\ 96.) & 543267189 \\ 97.) & 543267819 \\ 98.) & 543267891 \\ 99.) & 543621789 \\ 100.) & 543627189 \\ 101.) & 543627819 \\ 102.) & 543627891 \\ 103.) & 543672189 \\ 104.) & 543672819 \\ 105.) & 543672891 \\ 106.) & 543678219 \\ 107.) & 543678291 \\ 108.) & 543678921 \\ 109.) & 546321789 \\ 110.) & 546327189 \\ 111.) & 546327819 \\ 112.) & 546327891 \\ 113.) & 546372189 \\ 114.) & 546372819 \\ 115.) & 546372891 \\ 116.) & 546378219 \\ 117.) & 546378291 \\ 118.) & 546378921 \\ 119.) & 546732189 \\ 120.) & 546732819 \\ 121.) & 546732891 \\ 122.) & 546738219 \\ 123.) & 546738291 \\ 124.) & 546738921 \\ 125.) & 546783219 \\ 126.) & 546783291 \\ 127.) & 546783921 \\ 128.) & 546789321 \\ 129.) & 564321789 \\ 130.) & 564327189 \\ 131.) & 564327819 \\ 132.) & 564327891 \\ 133.) & 564372189 \\ 134.) & 564372819 \\ 135.) & 564372891 \\ 136.) & 564378219 \\ 137.) & 564378291 \\ 138.) & 564378921 \\ 139.) & 564732189 \\ 140.) & 564732819 \\ 141.) & 564732891 \\ 142.) & 564738219 \\ 143.) & 564738291 \\ 144.) & 564738921 \\ 145.) & 564783219 \\ 146.) & 564783291 \\ 147.) & 564783921 \\ 148.) & 564789321 \\ 149.) & 567432189 \\ 150.) & 567432819 \\ 151.) & 567432891 \\ 152.) & 567438219 \\ 153.) & 567438291 \\ 154.) & 567438921 \\ 155.) & 567483219 \\ 156.) & 567483291 \\ 157.) & 567483921 \\ 158.) & 567489321 \\ 159.) & 567843219 \\ 160.) & 567843291 \\ 161.) & 567843921 \\ 162.) & 567849321 \\ 163.) & 567894321 \\ 164.) & 654321789 \\ 165.) & 654327189 \\ 166.) & 654327819 \\ 167.) & 654327891 \\ 168.) & 654372189 \\ 169.) & 654372819 \\ 170.) & 654372891 \\ 171.) & 654378219 \\ 172.) & 654378291 \\ 173.) & 654378921 \\ 174.) & 654732189 \\ 175.) & 654732819 \\ 176.) & 654732891 \\ 177.) & 654738219 \\ 178.) & 654738291 \\ 179.) & 654738921 \\ 180.) & 654783219 \\ 181.) & 654783291 \\ 182.) & 654783921 \\ 183.) & 654789321 \\ 184.) & 657432189 \\ 185.) & 657432819 \\ 186.) & 657432891 \\ 187.) & 657438219 \\ 188.) & 657438291 \\ 189.) & 657438921 \\ 190.) & 657483219 \\ 191.) & 657483291 \\ 192.) & 657483921 \\ 193.) & 657489321 \\ 194.) & 657843219 \\ 195.) & 657843291 \\ 196.) & 657843921 \\ 197.) & 657849321 \\ 198.) & 657894321 \\ 199.) & 675432189 \\ 200.) & 675432819 \\ 201.) & 675432891 \\ 202.) & 675438219 \\ 203.) & 675438291 \\ 204.) & 675438921 \\ 205.) & 675483219 \\ 206.) & 675483291 \\ 207.) & 675483921 \\ 208.) & 675489321 \\ 209.) & 675843219 \\ 210.) & 675843291 \\ 211.) & 675843921 \\ 212.) & 675849321 \\ 213.) & 675894321 \\ 214.) & 678543219 \\ 215.) & 678543291 \\ 216.) & 678543921 \\ 217.) & 678549321 \\ 218.) & 678594321 \\ 219.) & 678954321 \\ 220.) & 765432189 \\ 221.) & 765432819 \\ 222.) & 765432891 \\ 223.) & 765438219 \\ 224.) & 765438291 \\ 225.) & 765438921 \\ 226.) & 765483219 \\ 227.) & 765483291 \\ 228.) & 765483921 \\ 229.) & 765489321 \\ 230.) & 765843219 \\ 231.) & 765843291 \\ 232.) & 765843921 \\ 233.) & 765849321 \\ 234.) & 765894321 \\ 235.) & 768543219 \\ 236.) & 768543291 \\ 237.) & 768543921 \\ 238.) & 768549321 \\ 239.) & 768594321 \\ 240.) & 768954321 \\ 241.) & 786543219 \\ 242.) & 786543291 \\ 243.) & 786543921 \\ 244.) & 786549321 \\ 245.) & 786594321 \\ 246.) & 786954321 \\ 247.) & 789654321 \\ 248.) & 876543219 \\ 249.) & 876543291 \\ 250.) & 876543921 \\ 251.) & 876549321 \\ 252.) & 876594321 \\ 253.) & 876954321 \\ 254.) & 879654321 \\ 255.) & 897654321 \\ 256.) & 987654321 \\ \hline \end{array}\)

 

There are 256 lists of the numbers 1,2,3,4,5,6,7,8,9 possible.

 

laugh

Jan 28, 2019

2 Online Users