Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #2
avatar
+1
Mar 25, 2019
 #3
avatar+448 
-3
Mar 25, 2019
 #1
avatar+26396 
+3

Given triangle ABC,

sinC=(sinA+sinB)/(cosA+cosB),

What is the shape of triangle ABC? 

 

sin(C)=sin(A)+sin(B)cos(A)+cos(B)sin(A)+sin(B)=2sin(A+B2)cos(AB2)cos(A)+cos(B)=2cos(A+B2)cos(AB2)sin(C)=2sin(A+B2)cos(AB2)2cos(A+B2)cos(AB2)sin(C)=sin(A+B2)cos(A+B2)sin(C)=sin(180(A+B))=sin(A+B)sin(A+B)=sin(A+B2)cos(A+B2)sin(A+B)=2sin(A+B2)cos(A+B2)2sin(A+B2)cos(A+B2)=sin(A+B2)cos(A+B2)2cos(A+B2)=1cos(A+B2)cos2(A+B2)=12cos(A+B2)=12cos(A+B2)=22A+B2=arccos(22)A+B2=45A+B=90 so C=90

The shape is a right-angled triangle

 

laugh

Mar 25, 2019
 #2
avatar+118704 
+2
Mar 25, 2019
 #1
avatar+26396 
+3

Triangle ABC has a right angle at C. sinA sinB and sinC forms a geometric sequence.

Please determine the value of sinA. 

 

Let r= ratio 

 

C=90sin(C)=sin(90)=1

 

B=90Asin(B)=sin(90A)=cos(A)

 

Geometric sequence:

a1=a=sin(A)a2=ar|a=sin(A)=sin(A)r|a2=sin(B)=cos(A)cos(A)=sin(A)r(1)a3=ar2|a=sin(A)=sin(A)r2|a3=sin(C)=11=sin(A)r2(2)

 

cos(A)=sin(A)r(1)r=cos(A)sin(A)1=sin(A)r2(2)|r=cos(A)sin(A)1=sin(A)(cos(A)sin(A))21=sin(A)cos2(A)sin2(A)1=cos2(A)sin(A)sin(A)=cos2(A)|cos2(A)=1sin2(A)sin(A)=1sin2(A)sin2(A)+sin(A)1=0sin(A)=1±14(1)2sin(A)=1±52sin(A)=1+52sin(A)=1+52

 

r2=1sin(A)r=1sin(A)r=11+52

 

a1=sin(A)=1+52a2=sin(B)=1+52a3=sin(C)=1

 

The value of sin(A) is  1+52 

 

laugh

Mar 25, 2019

3 Online Users

avatar
avatar