Questions   
Sort: 
 #1
avatar+118723 
+10

[ x/(3+x) * (2+x)/(3+x) ] / (1-x)/(3+x) = 0,2336

$$[ x/(3+x) * (2+x)/(3+x) ] / (1-x)/(3+x) = 0,2336\\\\
\left[\frac{x}{(3+x)} \times \frac{(2+x)}{(3+x)}\right]\div \frac{(1-x)}{(3+x)} = 0.2336\\\\
\mbox{It should be noted straight off that }3+x\ne0\;so\;x\ne-3\\\\
\left[\frac{x}{(3+x)} \times \frac{(2+x)}{(3+x)}\right]\times \frac{(3+x)}{(1-x)} = 0.2336\qquad \mbox{the (x+3) cancels,and }x\ne1\\\\
\left[\frac{x}{(3+x)} \times \frac{(2+x)}{1}\right]\times \frac{1}{(1-x)} = 0.2336\qquad \mbox{}\\\\
\frac{x(2+x)}{(3+x)(1-x)} = 0.2336\qquad \mbox{}\\\\
\frac{x(2+x)}{(3+x)(1-x)} = 0.2336\qquad \\\\
\mbox{Now multiply everything by the lowest common denominator (3+x)(1-x) to get rid of the fraction}\\\\
x(2+x) = 0.2336(3+x)(1-x)\qquad \\\\$$

 

you can keep going from here and solve it with the quadratic formula or you can just plug your initial equation into the site calc and get it to do it all for you.  

(x/(3+x) * (2+x)/(3+x) ) / (1-x)/(3+x) = 0.2336  

change the square brackets to round ones and change your decimal comma to a decimal point and just plug it in.

 

$${\frac{{\frac{\left({\frac{{\frac{{\mathtt{x}}}{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)}}{\mathtt{\,\times\,}}\left({\mathtt{2}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)}{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)}}\right)}{\left({\mathtt{1}}{\mathtt{\,-\,}}{\mathtt{x}}\right)}}}{\left({\mathtt{3}}{\mathtt{\,\small\textbf+\,}}{\mathtt{x}}\right)}} = {\mathtt{0.233\: \!6}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{\,-\,}}{\frac{{\mathtt{14\,508}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{704\,375}}}{\left({\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{502}}}{{\mathtt{219}}}}}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}{\left({\mathtt{876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}\right)}}{\mathtt{\,-\,}}{\mathtt{2}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\mathtt{\,-\,}}{\frac{{\mathtt{14\,508}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{704\,375}}}{\left({\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{502}}}{{\mathtt{219}}}}}}}{{\mathtt{2}}}}{\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}{\left({\mathtt{876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}\right)}}{\mathtt{\,-\,}}{\mathtt{2}}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{{\sqrt{{\frac{{\mathtt{14\,508}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{704\,375}}}{\left({\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{502}}}{{\mathtt{219}}}}}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}{\left({\mathtt{876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}\right)}}{\mathtt{\,-\,}}{\mathtt{2}}\\
{\mathtt{x}} = {\frac{{\sqrt{{\frac{{\mathtt{14\,508}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}}{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}}{\mathtt{\,-\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{704\,375}}}{\left({\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{502}}}{{\mathtt{219}}}}}}}{{\mathtt{2}}}}{\mathtt{\,\small\textbf+\,}}{\frac{{\sqrt{{\mathtt{191\,844}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\small\textbf+\,}}{\mathtt{219\,876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,-\,}}{\mathtt{704\,375}}}}}{\left({\mathtt{876}}{\mathtt{\,\times\,}}{\left({\frac{{\mathtt{625}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{6\,484\,410\,131}}}}}{\left({\mathtt{219}}{\mathtt{\,\times\,}}{{\mathtt{146}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}\right)}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{10\,930\,245\,625}}}{{\mathtt{84\,027\,672}}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}\right)}}{\mathtt{\,-\,}}{\mathtt{2}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{3.318\: \!755\: \!885\: \!933\: \!879\: \!7}}{\mathtt{\,-\,}}{\mathtt{2.004\: \!784\: \!814\: \!651\: \!891\: \!5}}{i}\\
{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{3.318\: \!755\: \!885\: \!933\: \!879\: \!7}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2.004\: \!784\: \!814\: \!651\: \!891\: \!5}}{i}\\
{\mathtt{x}} = -{\mathtt{2.184\: \!609\: \!027\: \!146\: \!14}}\\
{\mathtt{x}} = {\mathtt{0.822\: \!120\: \!799\: \!013\: \!899\: \!5}}\\
\end{array} \right\}$$

My goodness that looks horrible!

Let's see what the graph looks like and get the answer/s from there.

 

Alright there are your 2 answers.  I might keep going with the quadratic formula and get them that way.

$$x(2+x) = 0.2336(3+x)(1-x)\qquad \\\\
x^2+2x = 0.2336(3-3x+x-x^2)\qquad \\\\
x^2+2x = 0.2336(-x^2-2x+3)\qquad \\\\$$

I could just finish this by hand but I'mm goint to let the web 2 calc do it for me.

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{0.233\: \!6}}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}\right) \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{103\,571}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{257}}\right)}{{\mathtt{257}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{103\,571}}}}{\mathtt{\,-\,}}{\mathtt{257}}\right)}{{\mathtt{257}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{2.252\: \!235\: \!355\: \!360\: \!168\: \!6}}\\
{\mathtt{x}} = {\mathtt{0.252\: \!235\: \!355\: \!360\: \!168\: \!6}}\\
\end{array} \right\}$$

There you go, that is better!

These 2 answers would have been included in the original calculator ouput but some other imaginary roots were included as well.  You probably do not need to worry about those. 

Aug 10, 2014
Aug 9, 2014
 #85
avatar+118723 
0

Sun 10-8-14

 

* Complicated 'quadratic' equation - extension question, for interest only.

http://web2.0calc.com/questions/please-help_40

* What is a geometric mean?  (Note to Ninja: Maybe just under arithmetic?)

http://web2.0calc.com/questions/i-am-trying-to-find-the-geometric-mean-for-the-values-110-50-80-120-90

Another of Alan's 'specials' (Ninja: You can put it in extension algebra if you want, you decide)

http://web2.0calc.com/questions/1-3-2-3-3-3-4-3-5-3-2014-3#r4

 

♬                                        ♬ ♬ MELODY ♬ ♬                           ♫♪ You light up my life ♪ ♫ 

Aug 9, 2014
 #250
avatar+118723 
+3

@@ End of Day Wrap :      Sat 9/8/14      Sydney, Australia     Time 2:45  am    (Really Sunday morning)

Hi everyone,

Are you all enjoying your  weekend?  I hope that you are.  

There sere soem great answers today from CPhill, Rosala, alan, DragonSlayer554, AzizHusain, and NinjaDevo.

A big thank you to each of you.    

Rosala is  back, she has been away because of illness.  We are all glad that you are all better now. 

Here are the interest posts for the day:

(1) Rosala's back 

http://web2.0calc.com/questions/lets-end-the-day-with-a-laugh_7

(2) I don't know what Llamas have to do with it but it is a cute pic. 

http://web2.0calc.com/questions/ily-all-of-u-btw-whats-is-9-5-17-happy-birthday-llamas-year-of-llamas

(3)  A little LaTex lesson (I have already refernce this in the LaTex thread  )

http://web2.0calc.com/questions/peter-has-12-marbles-he-gives-3-to-tom-and-5-to-lily-how-many-does-marbled-does-he-have-left#r2

(4) * Finding the equation of a polynomial when you are given the roots.

 http://web2.0calc.com/questions/find-the-family-of-quadratic-functions-in-simplest-form-with-roots-at-2-plus-minus-3-root-5

(5)  Simplifying a difference of 2 squares.

 http://web2.0calc.com/questions/simplify-3-root-2-root-5-3-root-2-root-5

(6) * Why is Sinθ approximately equal to θ for very small values of θ 

http://web2.0calc.com/questions/why-is-sin-of-theta-appromately-equal-to-theta

(7) * Solving differential equations (This would go under calculus)

http://web2.0calc.com/questions/please-show-solution-and-working-out-for-dp-dt-2p-p-0-20-and-please-list-steps-to-always-take-with-differential-equations-in-order-i-g

(8) * Percentage - Find a total when given a part.

 http://web2.0calc.com/questions/435-is-15-of-what-number

(9)* I want this one in the Reference Material thread please Ninja.  

How do you choose the correct trigonometric ratio (sin, cos or tan) to use?

http://web2.0calc.com/questions/how-do-i-know-when-to-use-tan-instead-of-sin-or-cos-when-i-think-i-ve-got-it-right-by-using-sin-or-cos-i-ve-really-got-it-wrong-because-i

That is it for this evening.  It is past my bed time anyway lol. 

 

                          ♫♪                                 ♬ ♬ MELODY ♬ ♬                                        ♪ ♫ 

Aug 9, 2014

0 Online Users