First ask what's the probability that none of them have a birthday in common. Put the individuals in order from first to 23rd.
The probability that the 2nd person doesn't have the same birthday as the first is 364/365.
The probability that the 3rd doesn't have the same birthday as either of the first two is 363/365.
The probability that the 4th doesn't have the same birthday as any of the first three is 362/365.
...
...
The probability that the 23rd doesn't have the same birthday as any of the others is 343/365.
Therefore the overall probability that no one has a birthday in common is obtained by multiplying all the above probabilities together.
This is 364*363*362*...*343/36522 = 364!/((365-23)!*36522) = 365!/((365-23)!*36523)
The probability that at least two people have the same birthday is therefore 1 - 365!/((365-23)!*36523) as Melody has noted.