Questions   
Sort: 
 #2
avatar+9676 
+1

We let \(A = \sqrt{45 + \sqrt1} + \sqrt{45 + \sqrt2} + \cdots + \sqrt{45 + \sqrt{2024}} = \displaystyle\sum_{k = 1}^{2024} \sqrt{45 + \sqrt k}\) and \(B = \sqrt{45 - \sqrt 1} + \sqrt{45 - \sqrt2} + \cdots + \sqrt{45 - \sqrt{2024}} = \displaystyle\sum_{k = 1}^{2024} \sqrt{45 - \sqrt{k}}\), and then consider A - B.

 

Now, \(A -B = \displaystyle\sum_{k = 1}^{2024} \left(\sqrt{45 + \sqrt k} - \sqrt{45 - \sqrt k}\right)\). But what is the summand?

If we square it, that is \(\left(\sqrt{45 + \sqrt k} - \sqrt{45 - \sqrt k}\right)^2 = (45 + \sqrt k) - 2\sqrt{(45 - \sqrt k)(45 + \sqrt k)} + (45 - \sqrt k) = 90 - 2 \sqrt{2025 - k}\).

 

Taking square root gives \(\sqrt{45 + \sqrt k} - \sqrt{45 - \sqrt k} = \sqrt 2 \cdot \sqrt{45 - \sqrt{2025 - k}}\).

 

Therefore, \(A - B = \sqrt 2\displaystyle\sum_{k = 1}^{2024}\sqrt{45 - \sqrt{2025 - k}}\). Making the substitution n = 2025 - k and replacing the dummy variable n by k gives \(A - B= \sqrt 2 \displaystyle\sum_{k = 1}^{2024} \sqrt{45 - \sqrt k} = B \sqrt 2\).

 

That means \(B (1 + \sqrt 2) = A\), and therefore \(\begin{array}{rcl} \dfrac{\sqrt{45 + \sqrt{1}} + \sqrt{45 + \sqrt{2}} + \sqrt{45 + \sqrt{3}} + \dots + \sqrt{45 + \sqrt{2024}}}{\sqrt{45 - \sqrt{1}} + \sqrt{45 - \sqrt{2}} + \sqrt{45 - \sqrt{3}} + \dots + \sqrt{45 - \sqrt{2024}}} &=& \dfrac AB\\ &=& \dfrac{(1 + \sqrt 2)B}B\\ &=& \boxed{1 + \sqrt 2} \end{array}\)

 

In fact, you can prove that:

\(\displaystyle \dfrac{\displaystyle \sum_{k = 1}^{n^2-1}\sqrt{n^2 - \sqrt k}}{\displaystyle \sum_{k = 1}^{n^2-1}\sqrt{n^2 + \sqrt k}} = 1 + \sqrt 2\) for any positive integer n > 1.

May 22, 2022
 #1
avatar
0
May 22, 2022
 #4
avatar
+1
May 22, 2022
 #1
avatar+26400 
+2

Compute

 

\(\mathbf{\dfrac{1}{2^3 - 2} + \dfrac{1}{3^3 - 3} + \dfrac{1}{4^3 - 4} + \dots + \dfrac{1}{10^3 - 10}}\)

 

\(\begin{array}{|rcll|} \hline s&=& \dfrac{1}{2^3 - 2} + \dfrac{1}{3^3 - 3} + \dfrac{1}{4^3 - 4} + \dots + \dfrac{1}{10^3 - 10} \\\\ &=& \dfrac{1}{2(2^2-1)} + \dfrac{1}{3(3^2-1)} + \dfrac{1}{4(4^2-1)} + \dots + \dfrac{1}{10(10^2-19} \\\\ &=& \dfrac{1}{(2-1)2(2+1)} + \dfrac{1}{(3-1)3(3+1)} + \dfrac{1}{(4-1)4(4+1)} + \dots + \dfrac{1}{(10-1)10(10+1)} + \dots + \dfrac{1}{(n-1)n(n+1)} \\\\ \hline s &=&\sum \limits_{n=2}^{10}\dfrac{1}{(n-1)n(n+1)} \\ \\ &&\boxed{ \frac{1}{(n-1)n} =\frac{1}{n-1}-\frac{1}{n} \\ \frac{1}{(n+1)n} =\frac{1}{n}-\frac{1}{n+1}\\\ldots\\ \frac{1}{(n-1)n(n+1)} = \frac12\left( \frac{1}{n-1}-\frac{2}{n} +\frac{1}{n+1} \right) } \\\\ s &=&\dfrac12\sum \limits_{n=2}^{10}\left( \dfrac{1}{n-1}-\dfrac{2}{n} +\dfrac{1}{n+1} \right) \\ \\ &=&\dfrac12\left( \sum \limits_{n=2}^{10}\dfrac{1}{n-1}-\sum \limits_{n=2}^{10}\dfrac{2}{n} +\sum \limits_{n=2}^{10}\dfrac{1}{n+1} \right) \\ \\ &=&\dfrac12\left( \sum \limits_{n=1}^{9}\dfrac{1}{n} -\sum \limits_{n=2}^{10}\dfrac{2}{n} +\sum \limits_{n=3}^{11}\dfrac{1}{n} \right) \\ \\ &&\boxed{ \sum \limits_{n=1}^{9}\frac{1}{n} = \frac11 + \frac12 + \sum \limits_{n=3}^{9}\frac{1}{n} \\ -\sum \limits_{n=2}^{10}\frac{2}{n} = -\frac{2}{2}-\frac{2}{10}-2\sum \limits_{n=3}^{9}\frac{1}{n} \\ \sum \limits_{n=3}^{11}\frac{1}{n} = \frac{1}{10}+\frac{1}{11}+\sum \limits_{n=3}^{9}\frac{1}{n} } \\\\ s &=&\dfrac12\left( \dfrac11 + \dfrac12 + \sum \limits_{n=3}^{9}\dfrac{1}{n} -\dfrac{2}{2}-\dfrac{2}{10}-2\sum \limits_{n=3}^{9}\dfrac{1}{n} +\dfrac{1}{10}+\dfrac{1}{11}+\sum \limits_{n=3}^{9}\dfrac{1}{n}\right) \\\\ &=&\dfrac12\left( \dfrac11 + \dfrac12 -\dfrac{2}{2}-\dfrac{2}{10}+\dfrac{1}{10}+\dfrac{1}{11}\right) \\ \\ &=&\dfrac12\left( \dfrac12 -\dfrac{2}{10}+\dfrac{1}{10}+\dfrac{1}{11}\right) \\ \\ &=&\dfrac12\left( \dfrac12 -\dfrac{1}{10}+\dfrac{1}{11}\right) \\ \\ &=&\dfrac14 -\dfrac{1}{20}+\dfrac{1}{22} \\ \\ &=&\dfrac{5}{20} -\dfrac{1}{20}+\dfrac{1}{22} \\ \\ &=&\dfrac{4}{20}+\dfrac{1}{22} \\ \\ &=&\dfrac{1}{5}+\dfrac{1}{22} \\ \\ &=&\dfrac{22+5}{5*22}\\ \\ \mathbf{s}&=&\mathbf{\dfrac{27}{110}}\\ \hline \end{array}\)

 

\(\dfrac{1}{2^3 - 2} + \dfrac{1}{3^3 - 3} + \dfrac{1}{4^3 - 4} + \dots + \dfrac{1}{10^3 - 10} = \mathbf{\dfrac{27}{110}}\)

 

laugh

May 22, 2022

1 Online Users