Questions   
Sort: 
 #1
avatar+11912 
+5
Apr 5, 2015
 #482
avatar+118723 
+3

@@ End of Day Wrap   Sun 5/4/15    Sydney, Australia    Time 11:55pm   ♪ ♫

 

Hi everyone,

 

It was beautifully quiet today - I wish we had more quiet days. 

Still there are always some great questions and answers.  Today our wonderful answerers were Alan, Geno3141, CPhill, MathGod1, Princessnauwisa and Bertie.  Thanks all  

 

Interest posts:

 

1)      Statistics - binomial distribution                           Thanks Geno

2)      Simultaneous equations                                      Thanks Geno and CPhill

3)     Probability of winning the jackpot                        Thanks CPhill

 

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Apr 5, 2015
 #289
avatar+118723 
+5

Mon 6/4/15

FTJ means "For the Juniors"

1)     How many ways can k computers be connected to N periferals (cont)       Thanks Bertie et al.

2)     Alien spaceship (cont)     Alan found us a great 3D graphing program that i have added to our "reference material" sticky topic

3)     Manipulating logs                                                                                     Thanks CPhill and Melody

4)     Geometry with cosine rule                                                                       Thanks CPhill

5)     Volumes and the power of the web2 calc                                                  Thanks CPhill and Nauseated

6)     Great questions for the little kids                                                           Thanks CPhill and Melody

7)     Probability (using combinations)                                                               Thanks Alan and Melody

8)     How do you do compounding interest when it is not yearly?                      Melody

9)     Combinations - vertices of an octahedron                                                 Thanks CPhill

10)   Horrible big powers                                                                                   Thanks CPhill and Melody

11)   Manipulating trig                                                                                        Thanks CPhill

    

                    ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Apr 5, 2015
 #1
avatar+4711 
+10
Apr 5, 2015
 #8
avatar+893 
+8

$$\\\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)^{k}.$$

 

The object of the exercise is to show that this is equal to zero if N>k and equal to N! if N=k.

 

Begin with

$$(x-y)^{N}=\left(\begin{array}{c} N \\ 0 \end{array} \right)x^{N}-\left(\begin{array}{c} N \\ 1 \end{array} \right)x^{N-1}y+\left(\begin{array}{c} N \\ 2 \end{array} \right)x^{N-2}y^{2}- \dots (-1)^{N}\left(\begin{array}{c} N \\ N \end{array} \right)y^{N}=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)x^{N-\imath}y^{\imath}$$

Differentiating this wrt x,

$$N(x-y)^{N-1}=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)x^{N-\imath-1}y^{\imath}..............(1)$$

and substituting x =  y = 1,

$$0=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)$$                 This proves the result for k = 1.

Multiplying (1) by x and differentiating again,

$$N(x-y)^{N-1}+N(N-1)x(x-y)^{N-2}=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)^{2}x^{N-\imath-1}y^{\imath}..............(2)$$

and substituting x = y = 1,

$$0=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)^{2}$$ which is the result for k=2.

 

Proceeding in this way, (multiply by x, differentiate wrt x and substitute x = y = 1), gets the results for k = 3 ,4,...,  until we arrive at k = N. For that, we find

$$\text{ (a whole load of terms, each containing the factor (x-y))} +N!x=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)^{N}x^{N-\imath-1}y^{\imath}$$

And now, putting x = y = 1,

$$N!=\displaystyle \sum^{N-1}_{\imath=0}(-1)^{\imath}\left(\begin{array}{c} N \\ \imath\end{array} \right)(N-\imath)^{N}$$ which is the N=k result.

Apr 5, 2015

0 Online Users