Questions   
Sort: 
 #4
avatar+1314 
+5

Dragonlance, i actually did all of these before they were answered. And btw, this is not my homework.

Jun 7, 2015
 #5
avatar+1314 
0

I agree Melody, for example chefs!

Jun 7, 2015
 #1
avatar+600 
+5
Jun 7, 2015
 #61
avatar+118724 
+5

 

 

@@ End of Day Wrap   Sun 7/6/15   Sydney, Australia Time   1:35am (yes, it is Mon morn   )   ♪ ♫

 

Hello everyone,

 

Our wonderful answerers today were Dragonlance, Radix, CPhill, Alan, Eloise, MathsGod1, Will85237 and asinus.  Thank you   

 

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts:

 

FTJ means 'For the juniors' 

1)  Observation with Desmos calculator                       Thanks Dragonlance and Alan   

2)  Find maximum storage    advanced                        Thanks CPhill    

3)  Integer addition      FTJ                                         Thanks asinus and Melody  

4)  This looks interesting - take a look at the link          No answer yet

5)  Factoring in pairs                                                  Melody

 

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 7, 2015
 #52
avatar+118724 
0

Mon 8/6/15

If you would like to comment on other site issues please do so on the Lantern Thread.  Thank you.    

 

Interest Posts: 

FTJ means 'For the juniors' 

1)  An unusual alternate base question.                        Melody

2)  Another very unusual base question                        Melody

3)  There are a lot of interesting different base questions on page 1843 AND 1844

         Most are Mellie specials and some have not been answered yet.  They are marked with "?" icons

4)  Strange equation     Advanced                               Not answered

5)  Using Golden ratio                                                Thanks Alan

6)  Proof                 Advanced                                     Not answered    

  

                         ♫♪  ♪ ♫                                ♬ ♬ MELODY ♬ ♬                                 ♫♪  ♪ ♫

Jun 7, 2015
 #3
avatar+118724 
0
Jun 7, 2015
 #74
avatar+118724 
+5

YES that looks really good MG.

There are a couple of points I'd like to make though.  

First, you did not simplify  $$\frac{4}{10}$$    right at the very begining!

second, you are still splitting it into bits - i don't wnat you to do that!  

I accept that not ALL your working will be shown, some will be scribbled on bits of paper and it does not need to be included.  

Also, when you are adding and subtracting mixed numerals do not change them into improper fractions.

It is NOT necessary and it makes the calculations worse!

 

$$\\1\frac{3}{4}\times 7 +8^2-6\div \frac{4}{10}\\\\
1\frac{3}{4}\times 7 +8^2-6\div \textcolor[rgb]{1,0,0}{\frac{2}{5}}\\\\
=1\frac{3}{4}\times7+\textcolor[rgb]{1,0,0}{64} -6\div\frac{2}{5}\qquad\\\\
=\textcolor[rgb]{1,0,0}{\frac{4*1+3}{4}}\times7+64 -6\div\frac{2}{5}\qquad\\\\
=\textcolor[rgb]{1,0,0}{\frac{7}{4}}\times\textcolor[rgb]{1,0,0}{\frac{7}{1}}}+64 -6\div\frac{2}{5}\qquad\\\\
=\textcolor[rgb]{1,0,0}{\frac{49}{4}}+64 -6\div\frac{2}{5}\\\\
=\frac{49}{4} +64-6\textcolor[rgb]{1,0,0}{\times\frac{5}{2}}\\\\
=\frac{49}{4} +64-\textcolor[rgb]{1,0,0}{\frac{6}{1}\times\frac{5}{2}}\\\\
=\frac{49}{4} +64-\textcolor[rgb]{1,0,0}{\frac{3}{1}\times\frac{5}{1}}\\\\
=\frac{49}{4} +64-\textcolor[rgb]{1,0,0}{\frac{3*5}{1*1}}\\\\$$

 

$$\\=\frac{49}{4} +64-\textcolor[rgb]{1,0,0}{15}}\\\\
=\textcolor[rgb]{1,0,0}{12\frac{1}{4}} +64-15\\\\
=\textcolor[rgb]{1,0,0}{12+\frac{1}{4}} +64-15\\\\
=\textcolor[rgb]{1,0,0}{64+12-15+\frac{1}{4}}\\\\
=\textcolor[rgb]{1,0,0}{64-3+\frac{1}{4}}\\\\
=\textcolor[rgb]{1,0,0}{61+\frac{1}{4}}\\\\
=61\frac{1}{4}$$

 

Now that was an effort!

 

Look though how I have done it MG and learn!!   I am sure that you will :)

Especially look at the mixed numeral addition!

Jun 7, 2015
 #2
avatar+130518 
+13

Let x be the number of  "X" cabinets and y be the number of "Y" cabinets.

 

And we are told the following....... 

 

x / y  ≥ 2/3 →  3x  ≥ 2y  →  y ≤ ( 3/2 ) x

 

100x + 200y ≤ 1400  .....  this is the cost constraint

 

.6x + .8y ≤ 7.2   .......this is the  constraint on the square meters

 

We also need two more contraints:  x ≥ 0  and y  ≥ 0,   since we can't have a negative number of cabinets!!!

 

And  we want to  maximize the cubic meters of  file storage .......we can just call this.....   .8x + 1.2y

 

Have a look at the graph of the inequalities, here.........https://www.desmos.com/calculator/rxzwqo3dnw

 

The maximum for the objective function occurs at a corner point in the feasible region......the graph shows that there are two "whole number" corner points at  (8, 3)  and (12, 0)....another corner point occurs at (3.5, 5.25)....but.....we can't buy "partial" numbers of cabinets.....!!!

 

Notice, at (8, 3),   the objective function = .8(8) + 1.2(3)  = 10

 

At (12, 0), the objective function  = .8(12) + 1.2(0)  = 9.6

 

It looks like the best option for maximum storage under the given constraints is to purchase 8 of the "X" cabinets and 3 of the "Y" cabinets

 

Sorry....I don't know a second method.....

 

 

Jun 7, 2015

2 Online Users