Loading [MathJax]/jax/output/SVG/jax.js
 
  Questions   
Sort: 
 #1
avatar+26396 
+2

Express a4(b - c) + b4 (c - a) + c4 (a - b) as the product of four factors.

(b-c),(c-a) and (a-b) are products of this expression

 

a4(bc)+b4(ca)+c4(ab)=(bc)(ca)(ab)xx=a4(bc)+b4(ca)+c4(ab)(bc)(ca)(ab)=a4ba4c+b4cb4a+c4ac4ba2b+a2cb2c+b2ac2a+c2b=a4·ba4·ca·b4+a·c4+b4·cb·c4a2·b+a2·c+a·b2a·c2b2·c+b·c2

 

Polynom division after variable c:

in divisor term with max power of c is: ac2current residue: a4·ba4·ca·b4+a·c4+b4·cb·c4in current residue term with max power of c: ac4quotient ac4ac2=c2product c2·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a2·b·c2a2·c3a·b2·c2+a·c4+b2·c3b·c4subtract product form current residue: current residue: a4·ba4·ca2·b·c2+a2·c3a·b4+a·b2·c2+b4·cb2·c3in current residue term with next lower power of c is: a2·c3quotient a2·c3ac2=a·cproduct a·c·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a3·b·ca3·c2a2·b2·c+a2·c3+a·b2·c2a·b·c3subtract product form current residue: current residue: a4·ba4·ca3·b·c+a3·c2+a2·b2·ca2·b·c2a·b4+a·b·c3+b4·cb2·c3in current residue term with next lower power of c is: a·b·c3quotient a·b·c3a·c2=b·cproduct b·c·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a2·b2·ca2·b·c2a·b3·c+a·b·c3+b3·c2b2·c3subtract product form current residue: current residue: a4·ba4·ca3·b·c+a3·c2a·b4+a·b3·c+b4·cb3·c2in current residue term with next lower power of c is: a3·c2quotient a3·c2a·c2=a2product a2·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a4·ba4·ca3·b2+a3·c2+a2·b2·ca2·b·c2subtract product form current residue: current residue: a3·b2a3·b·ca2·b2·c+a2·b·c2a·b4+a·b3·c+b4·cb3·c2in current residue term with next lower power of c is: a2·b·c2quotient a2·b·c2a·c2=a·bproduct a·b·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a3·b2a3·b·ca2·b3+a2·b·c2+a·b3·ca·b2·c2subtract product form current residue: current residue: a2·b3a2·b2·ca·b4+a·b2·c2+b4·cb3·c2in current residue term with next lower power of c is: a·b2·c2quotient a·b2·c2a·c2=b2product b2·(a2·b+a2·c+a·b2a·c2b2·c+b·c2)=a2·b3a2·b2·ca·b4+a·b2·c2+b4·cb3·c2subtract product form current residue: current residue: 0x=a4·ba4·ca·b4+a·c4+b4·cb·c4a2·b+a2·c+a·b2a·c2b2·c+b·c2=a2a·ba·cb2b·cc2

 

a4(bc)+b4(ca)+c4(ab)=(bc)(ca)(ab)(a2a·ba·cb2b·cc2)

 

laugh

Oct 20, 2017
 #2
avatar+26396 
+2

My math program says that you can transform....
1/secθtanθ=sinθ
Into...
tan2θ+1=sec2θ
Could someone explain how they made this transition?

 

1sec(θ)tan(θ)=sin(θ)|sec(θ)tan(θ)=sin(θ)sec(θ)|square both sidestan2(θ)=sin2(θ)sec2(θ)|sin2(θ)+cos2(θ)=1 or sin2(θ)=1cos2(θ)tan2(θ)=[ 1cos2(θ) ]sec2(θ)tan2(θ)=sec2(θ)cos2(θ)sec2(θ)|sec2(θ)=1cos2(θ)tan2(θ)=sec2(θ)cos2(θ)1cos2(θ)tan2(θ)=sec2(θ)cos2(θ)cos2(θ)|cos2(θ)cos2(θ)=1tan2(θ)=sec2(θ)1|+1tan2(θ)+1=sec2(θ)

 

laugh

Oct 20, 2017
 #1
avatar+26396 
+1

What is the smallest positive integer that will satisfy the following two modular equations:

N mod 3,331 =1,851 and

N mod 1,851 =1,468?

 

N1851(mod3331)N1468(mod1851)

 

Formula:

N=1851185111851(mod3331)+1468333113331(mod1851)+33311851zzZ

 

check:

(mod3331):N=185118511851+0+0=1851 (mod1851):N=0+146833313331+0=1468 

 

with φ()= Euler's totient theorem :3331 prime numberφ(p)=p1φ(3331)=33301851=3617φ(1851)=1851(113)(11617)=1232

 

Modular inverses:

11851(mod3331)1851φ(3331)1(mod3331)|gcd(3331,1851)=1185133301(mod3331)18513329(mod3331)835(mod3331)

 

13331(mod1851)3331φ(1851)1(mod1851)|gcd(3331,1851)=1333112321(mod1851)33311231(mod1851)1387(mod1851)

 

N=18511851835+146833311387+33311851z|zZ=2860877835+6782302396+6165681z=964318023155147(mod6165681)+6165681z=55147+6165681z

 

551471851(mod3331)551471468(mod1851)

 

laugh

Oct 20, 2017

0 Online Users