Processing math: 100%
 
  Questions   
Sort: 
 #1
avatar+26396 
+1

1. In triangle ABC, AB=12 units and AC=9 units. Point D is on segment BC so that BD:DC=2:1. If AD=6 units, what is the length of segment BC? Express your answer in simplest radical form. 

 

Let BC = x

 

cos rule:

62=92+(13x)22913xcos(C)62=92+(13x)26xcos(C)6xcos(C)=9262+x29(1)6xcos(C)=45+x29

 

cos rule:

122=92+x229xcos(C)122=92+x218xcos(C)18xcos(C)=92122+x218xcos(C)=x263|:3(2)6xcos(C)=x2321

 

(2) = (1):

6xcos(C)=x2321=45+x29x2321=45+x29x2(1319)=66x2(9327)=66x2(627)=66x2=66(276)x2=1127x2=11323x=333

 

The length of segment BC is 333

 

laugh

Mar 15, 2018
 #1
avatar+9488 
+2

f(x)=6x2+11x4

 

The domain is all real values of  x  such that

 

-6x2 + 11x - 4  ≥  0

 

To solve this inequality, let's first solve this equation...

 

-6x2 + 11x - 4  =  0       Using the quadratic formula...

 

x  =  11±1124(6)(4)2(6)=11±512

 

x  =  12         or        x  =  43

 

Since the x values that make  -6x2 + 11x - 4  equal  0  are  12   and   43 ,

(and since  -6x2 + 11x - 4  is continuous....)

the x values that make  -6x2 + 11x - 4  greater than or equal to  0  will be either be...

those between 12  and  43  ,  that is,  those in the interval  [12,43]

OR

those outside of that interval, that is, those in the interval  (,12][43,)

 

To determine which...

 

Let's test an  x  value in the interval  [12,43] .  Does  x = 1  make  -6x2 + 11x - 4  ≥  0    ?

-6(1)2 + 11(1) - 4  ≥  0

1 ≥ 0      true

 

Let's test an  x  value in the interval  (,12][43,) . Does  x = 0  make  -6x2 + 11x - 4  ≥  0 ?

-6(0)2 + 11(0) - 4  ≥  0

-4 ≥ 0     false

 

So the  x  values that make  -6x2 + 11x - 4  ≥  0  are those in the interval  [12,43]

The domain of  f(x)  is  [12,43]

.
Mar 15, 2018
 #2
avatar
0
Mar 15, 2018

3 Online Users

avatar
avatar